• Title/Summary/Keyword: Natural fiber composite materials

Search Result 116, Processing Time 0.02 seconds

Effective Material Properties of Composite Materials by Using a Numerical Homogenization Approach (균질화 접근법을 통한 복합재의 유효물성치 계산)

  • Anto, Anik Das;Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.28-37
    • /
    • 2019
  • Due to their flexible tailoring qualities, composites have become fascinating materials for structural engineers. While the research area of fiber-reinforced composite materials was previously limited to synthetic materials, natural fibers have recently become the primary research focus as the best alternative to artificial fibers. The natural fibers are eco-friendly and relatively cheaper than synthetic fibers. The main concern of current research into natural fiber-reinforced composites is the prediction and enhancement of the effective material properties. In the present work, finite element analysis is used with a numerical homogenization approach to determine the effective material properties of jute fiber-reinforced epoxy composites with various volume fractions of fiber. The finite element analysis results for the jute fiber-reinforced epoxy composite are then compared with several well-known analytical models.

Composite Aerostatic Spindle (복합재료 공기정압 주축부)

  • 방경근;장승환;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.134-138
    • /
    • 1999
  • For the stable operation of high speed aerostatic spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are not appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, the composite spindles with aerostatic bearing were designed and manufactured with carbon fiber/epoxy composite. The fundamental natural frequency of the composite spindle was evaluated through the modal testing.

  • PDF

Interfacial Evaluation of Flax and Hemp Fibers/Polypropylene Composites Using Micromechanical Test and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp섬유 강화된 Polypropylene 복합재료의 계면 물성 평가)

  • Son, Tran-Quang;Hwang, Byung-Sun;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Interfacial evaluation of various combinations of both Flax and Hemp fibers/polypropylene were performed by using micromechanical test and nondestructive acoustic emission (AE). It can be because interfacial adhesion between the natural fiber surface and matrix plays an important role in controlling the overall mechanical properties of polymer composite materials by transferring the stress from the matrix to the fiber. It is necessary to characterize the interphase and the level of adhesion to understand the performance of the composites properly. Microfailure mechanism of single Flax fiber bundles were investigated using the combination of single fiber tensile test and nondestructive acoustic emission. Microfailure modes of the different natural fiber/polypropylene systems were observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

Interfacial Evaluation of Kenaf and Ramie Fibers/Epoxy Composites using Micromechanical Technique (Micromechanical 시험법을 이용한 Kenaf와 Ramie 섬유강화 에폭시 복합재료의 계면 물성 평가)

  • Son Tran Quang;Park Joung-Man;Hwang Byung-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.92-95
    • /
    • 2004
  • Interfacial shear strength (IFSS) of environmentally- friend natural fiber reinforced polymer composites playa very important role in controlling the overall mechanical properties. In this work the IFSS of Ramie and Kenaf fibers/epoxy systems were evaluated using the combination of micromechanical technique, microdroplet test to find out an optimal condition in accordance with final purpose by comparing to each other. Clamping effect on fiber elongation was determined as well. In addition, the mechanical properties of the natural fibers were investigated using single fiber tensile test and analyzed statistically by both uni- and bimodal Weibull distributions. Microfailure modes of different natural fiber structures were observed using optical microscope.

  • PDF

Investigation on Mechanical Properties of Natural-Fiber Composite Manufactured using VARTM Method (VARTM 공법으로 제작된 자연섬유 복합재료의 기계적 특성 분석)

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.59-62
    • /
    • 2016
  • In this study, an investigation was performed on the mechanical properties of the natural-fiber-composite structure. The specimen was manufactured using the Vacuum Assisted Resin Transfer Molding (VARTM) method. The flax-fiber materials were adopted for the natural fiber composite, and vinyl-ester resin was also adopted. After a manufactured specimen was obtained, a mechanical test was carried out. The mechanical properties of the experiment results were compared with those of the natural-composite data cited from a number of other references.

Improvement of the mechanical performance and dyeing ability of bamboo fiber by atmospheric pressure air plasma treatment

  • Hoa, Ta Phuong;Chuong, Bui;Hung, Dang Viet;Tien, Nguyen Dung;Khanh, Vu Thi Homg
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.03a
    • /
    • pp.14-20
    • /
    • 2009
  • Atmospheric pressure air plasma was applied for treatment of different kinds of natural bamboo fiber to improve their mechanical properties and surface characteristics, which are suitable for adhesion and dyeing. The tensile strength and Young modulus of bamboo fiber were significantly improved; SEM and AFM study show that the surface of fiber became cleaner and rougher after plasma treatment. Plasma treatment caused the cracking, removing of the protective skin of alkali-untreated fiber and etching to form a cleaner and rougher surface. The dyeability of both groups of bamboo fiber which are used for composite and textile purposes is significantly enhanced after treatment.

  • PDF

Trends and Perspective for Eco-friendly Composites for Next-generation Automobiles (차세대 자동차용 친환경 복합재료의 동향 및 전망)

  • Eunyoung Oh;Marcela Maria Godoy Zuniga;Jonghwan Suhr
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • As global issues and interest in the environment increase, the transition to eco-friendly materials is accelerating in the automobile industry. In the automotive industry, eco-friendly composite materials are mainly used in various interior and exterior components, reducing the reliance on traditional petroleum-based materials. In particular, natural fiber composites help reduce fuel consumption and greenhouse gas emissions by making vehicles lighter. Additionally, they boast superior thermal properties and durability compared to non-recyclable composite materials, making them suitable for automotive interior parts. Furthermore, reduced production costs and sustainability are key advantages of natural fiber composites. The eco-friendly composites market is expected to grow to $86.43 billion at a CAGR of 15.3% from 2022 to 2030, and the natural fiber composites market is predicted to grow at a CAGR of 5.3% from 2023 to 2028 to $424 million. In this review paper, we explore research trends in nextgeneration natural fiber composite materials for automobiles and their application in the actual automobile industry.

Interfacial Evaluation of Modified Jute and Hemp Fibers/Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) Composites Using Micromechanical Test and Nondestructive Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp 섬유 강화 에폭시 복합재료의 계명 물성 평가)

  • Son, Tran Quang;Hwang, Byung-Sun;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.157-160
    • /
    • 2005
  • The surface energies and acid-base interaction between the untreated and treated Jute or Hemp fibers and different matrix compositions of polypropylene-maleic anhydride polypropylene copolymers (PP-MAPP) were investigated using dynamic contact angle measurement. The contribution of the acid-base property into the interfacial adhesion of the natural fibers/matrix systems were characterized by calculating the work adhesion coming from the acid-base interaction. On the other hand, microfailure mechanism of both single Jute and Hemp fiber bundles were investigated using the combination of single fiber tensile test and acoustic emission. Distinctly different micro failure modes of the different natural fiber/polypropylene systems wet ε observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

Interfacial and Thermal Characteristics of Natural Fiber Composites Reinforced with Henequen Surface-Treated with EBI

  • Pang Yansong;Han Seong Ok;Cho Donghwan;Drzal Lawrence T.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.88-91
    • /
    • 2004
  • In this study, a number of natural fiber henequen reinforced polymer matrix composites were successfully fabricated by means of a compression molding technique using chopped henequen fibers surface-treated with different electron beam irradiation (EBI) dosages, thermoplastic poly(butylene succinate), thermosetting unsaturated polyester and phenolic resins. Their interfacial and thermal characteristics were studied in terms of interfacial shear strength, fracture surface, dynamic mechanical properties, dimensional stability, and thermal stability using single fiber microbonding test, SEM, DMA, TMA, and TGA. The results show that their interfacial and thermal properties significantly depend on the intensity of EBl treatment on the natural fiber surface.

  • PDF

A Study on the Fabrication and Mechanical Properties Evaluation of Natural Fiber Composites added Eco-friendly Materials (친환경 소재를 첨가한 천연섬유 복합재의 제조 및 기계적 물성 평가 연구)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.213-219
    • /
    • 2020
  • Recently, global facing environmental issues have been raised caused by plastic waste. Hence, increasing the demand for interest in environmentally friendly materials. In this row, research on engineering composite materials also replacing the synthetic reinforcement by introducing natural fibers. However, focus on the strength and interfacial adhesion between matrix and reinforcement is very essential in natural fiber composite, which is insufficient in the literature. There are number of approaches for improving the mechanical strength of the composites, one of the common methods is to reinforce additive nanoparticles. The present investigation, bio-additives were synthesized utilizing bio-waste, cheap, bio-degradable sea-weed powder that could replace expensive nanomaterials and reinforced into the CFRP composite through Hand lay-up followed by a vacuum process. Mechanical properties were evaluated and analyzed through microanalysis. The results concluded that synthesized additives are effective for improving mechanical properties such as tensile, flexural, impact, and shear strength. Overall, the results confirmed that the fabricated composites have potential applications in the field of engineering applications.