• 제목/요약/키워드: Natural fiber composite

검색결과 232건 처리시간 0.024초

Sound Absorption of Natural Fiber Composite from Sugarcane Bagasse and Coffee Silver Skin

  • Wachara KALASEE;Putipong LAKACHAIWORAKUN;Visit EAKVANICH;Panya DANGWILAILUX
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권6호
    • /
    • pp.470-480
    • /
    • 2023
  • This study aimed to develop a sound-absorbing composite using sugarcane bagasse (SB) and coffee silver skin (CS) as raw materials. The composite boards were manufactured by bonding the fibers with Melamine Urea-Formaldehyde adhesive, ensuring a consistent thickness of 30 mm. Various densities were employed, namely 380, 450, and 520 kg/m3. The samples were fabricated with different fiber ratios, including SB100%, SB75% with CS25%, and SB50% with CS50%. The sound absorption coefficient (SAC) and noise reduction coefficient (NRC) were measured using the impedance tube method within a frequency range of 63-6,300 Hz. The experimental results revealed that the mixing ratio of CS exerted a notable influence on enhancing the SAC, while the density of the composite board exhibited a significant impact on increasing both the SAC and NRC. Among the densities tested, the optimal value was observed at 520 kg/m3, yielding a SAC value of 0.65 at a frequency of 1,000 Hz and an NRC value of 0.55 for the SB50-CS50 composite plate. These findings underscore the importance of considering the CS mixing ratio and composite board density when aiming to optimize sound absorption properties.

하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구 (A study on characteristics according to the parameter variation for hybrid shaft design)

  • 홍동표;김현식;홍용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.99-104
    • /
    • 2008
  • The Carbon fiber epoxy composite material and aluminum have many advantages about higher specific stiffness and good fatigue characteristics. basically, the propeller shaft of automobile must satisfy high natural frequency more than 9,200 rpm to satisfy high number of rotation and high torsion torque more than 2,700Nm. In these reason, studied natural frequency and torsion torque characteristics of shaft according to parameter variations with the outdiameter and thickness. From the torsion tester and natural frequency experiments FE analyses was compared vibration and torque characteristics of hybrid shaft Designed hybrid shaft was experimented through FFT analyzer and torsion tester each and satisfied that hybrid shaft reverence 60mm and thickness 5mm by a these experiment is most suitable. Therefore, that can manufacture existent steel two piece type propeller shaft to one piece type hybrid shaft.

  • PDF

하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구 (A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design)

  • 홍용;김현식;홍동표
    • 한국소음진동공학회논문집
    • /
    • 제19권3호
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.

Experimental investigation on thermal behavior, sound absorption, and flammability of natural fibre polymer composites

  • Ravi Kumar, B.;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.613-618
    • /
    • 2020
  • Exhausting oil resources and increasing pollution around the world are forcing researchers to look for new, renewable, biodegradable materials to lead sustainable development. The use of fiber reinforced composites based on natural fibres has increasingly begun as prospective materials for various engineering applications in the automotive, rail, construction and aerospace industries. The natural fiber chosen to make the composite material is plant-based fibre, e.g. jute fibre, and hemp fibre. Thermosetting polymer based Epoxy (LY556) was utilized as matrix material and The composites were produced using hand lay-up technique. The fabricated composites were tested for acoustic testing, thermo-gravimetric analysis (TGA) and flammability testing to asses sound absorption, thermal decomposition and fire resistivity of the structures. Hemp fibre composites have shown improved thermal stability over Jute fibre composites. However, the fire resistance characteristics of jute fibre composites are better as compared to hemp fibre composites. The sound absorption coefficient of composites was found to enhance with the increase of frequency.

섬유의 종류에 따른 폐유리와 무기결합재 인조석재의 역학적 특성 (Mechanical Properties of the artificial Stone According to the Ternary System Inorganic Composite and Waste Glass and Fiber type)

  • 유용진;김헌태;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.321-322
    • /
    • 2013
  • Recently, the exhaustion of resource and environmental damage is serious due to the global warming because of the CO2 exhaust and each type the natural aggregate picking described below. meanwhile, The rest is the actual condition gone to the dumping ground that there is nearly no use which the waste glass can recycle and it is recycled. This research applied the waste glass as the cement substitute material the inorganic binder and coares aggregate substitute material. It utilizes the substitute material of the cement according to it and natural aggregate and tries to develop the environment-friendly artificial stone. The inorganic binder used the blast furnace slag, red mud, and fly ash. The straight type steel fiber, PVA fiber, PA fiber, and cellulosic fiber were used with a kind of fiber. As to the experimental item according to it, the compressive strength is the flexural strength and compressive strength.

  • PDF

천연섬유 복합재료의 홀 가공을 위한 파라메트릭 연구 (Parametric Study for Hole Machining in Natural Fiber Composites)

  • 이동우;오정석;송정일
    • Composites Research
    • /
    • 제30권1호
    • /
    • pp.35-40
    • /
    • 2017
  • 본 연구에서는 천연섬유 복합재료의 홀 가공 인자를 최적화 하기 위하여, 진공 인퓨전 성형공정을 이용하여 천연섬유 복합재료를 제조하였으며 보강재로는 아마섬유를 사용하였다. 그 후 가공에 적합한 드릴을 설계하고, 선정된 가공조건에 따라 홀 가공을 수행하였다. 실험횟수를 최소화하기 위하여 다구찌 실험계획법을 사용하였으며, 홀 가공 후 가공면내 거칠기를 측정하고 거칠기비 분석을 통하여 그 결과를 비교하였다. 실험결과 천연섬유 복합재료의 가공 시 절삭저항을 분산할 수 있는 새로운 드릴을 설계하였다. 이 드릴을 사용할 경우 가공중의 절삭저항이 분산되었으며, 표면거칠기가 최소화된 천연섬유 복합재료를 얻을 수 있었다. 또한 홀 가공에 적합한 최적의 드릴 회전속도 및 이송속도를 선정하였다.

Multiscale bending and free vibration analyses of functionally graded graphene platelet/ fiber composite beams

  • Garg, A.;Mukhopadhyay, T.;Chalak, H.D.;Belarbi, M.O.;Li, L.;Sahoo, R.
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.707-720
    • /
    • 2022
  • In the present work, bending and free vibration analyses of multilayered functionally graded (FG) graphene platelet (GPL) and fiber-reinforced hybrid composite beams are carried out using the parabolic function based shear deformation theory. Parabolic variation of transverse shear stress across the thickness of beam and transverse shear stress-free conditions at top and bottom surfaces of the beam are considered, and the proposed formulation incorporates a transverse displacement field. The present theory works only with four unknowns and is computationally efficient. Hamilton's principle has been employed for deriving the governing equations. Analytical solutions are obtained for both the bending and free vibration problems in the present work considering different variations of GPLs and fibers distribution, namely, FG-X, FG-U, FG-Λ, and FG-O for beams having simply-supported boundary condition. First, the matrix is assumed to be strengthened using GPLs, and then the fibers are embedded. Multiscale modeling for material properties of functionally graded graphene platelet/fiber hybrid composites (FG-GPL/FHRC) is performed using Halpin-Tsai micromechanical model. The study reveals that the distributions of GPLs and fibers have significant impacts on the stresses, deflections, and natural frequencies of the beam. The number of layers and shape factors widely affect the behavior of FG-GPL-FHRC beams. The multilayered FG-GPL-FHRC beams turn out to be a good approximation to the FG beams without exhibiting the stress-channeling effects.

용융가공법을 이용한 셀룰로오스 디아세테이트/라미섬유 천연복합체의 제조 (Preparation of Cellulose Diacetate/Ramie Fiber Biocomposites by Melt Processing)

  • 이상환;이상율;남재도;이영관
    • 폴리머
    • /
    • 제30권1호
    • /
    • pp.70-74
    • /
    • 2006
  • 셀룰로오스 디아세테이트(CDA)에 가소제로서 트리아세틴(TA)과 에폭시화된 콩기름(ESO)을 첨가하여 고속믹서에서 일차적으로 CDA를 가소화한 후, 여기에 화학적으로 처리한 라미섬유를 각각 첨가하여 천연섬유 복합체를 제조하였다. DMA측정에서 $tan\;\delta$ 피크로부터 유리전이 온도를 확인한 결과, 가소화된 CDA혼합체는 $85\;^{\circ}C$를 나타내고 여기에 라미섬유를 첨가하여 복합화한 필름의 경우는 $55\;^{\circ}C$ 증가한 $140\;^{\circ}C$$T_g$를 보였다. 기계적 강도 측정에서는 알칼리 처리된 라미섬유 필름이 상용화된 폴리프로필렌에 비교하여 인장강도와 탄성률이 각각 $15\%$$41\%$향상된 높은 수치로 우수한 물성이 관찰되었다 또한 복합 필름의 SEM 이미지로부터 알칼리 처리한 라미섬유(A1Ra)는 가소화된 CDA간의 계면접착성이 향상되었음을 확인할 수 있었다.

실리카 코팅된 TiO2-천연 제올라이트 복합입자 제조와 특성평가 (Surface Coating of SiO2 on TiO2-natural Zeolite Composite Particles and Its Characterization)

  • 임형미;정지숙;이동진;이승호
    • 한국재료학회지
    • /
    • 제16권11호
    • /
    • pp.692-697
    • /
    • 2006
  • Deodorization of natural zeolites have been improved not only for polar but also for non-polar pollutants by sucessive ion exchanges of H and Ag ions starting from Korean natural zeolite with high adsorption capacity. The modified zeolites with $TiO_2$ coating on the surface revealed high deodorization and photocatalytic decomposition effects. Further modification was made with $10{\sim}20nm$ silica nano particles coating on the surface, the resulting composite particles of $SiO_2/TiO_2/modified$ natural zeolite revealed not only comparable deodorization but also better durability and resisatnce to color change compared to the $TiO_2$/modified natural zeolite without much compensation of photocatalytic decomposition effect, when the composite particles were exposed to the polypropylene non-woven fiber coated with organic binder. It is expected for the composite particle prepared here to be used as indoor building materials for indoor air quality control.

Buckling and vibration of laminated composite circular plate on winkler-type foundation

  • Afsharmanesh, B.;Ghaheri, A.;Taheri-Behrooz, F.
    • Steel and Composite Structures
    • /
    • 제17권1호
    • /
    • pp.1-19
    • /
    • 2014
  • Buckling and vibration characteristics of circular laminated plates under in-plane edge loads and resting on Winkler-type foundation are solved by the Ritz method. Inclusive numerical data are presented for the first three eigen-frequencies as a function of in-plane load for different classical edge conditions. Moreover, the effects of fiber orientation on the natural frequencies and critical buckling loads of laminated angle-ply plates with stacking sequence of $[({\beta}/-{\beta}/{\beta}/-{\beta})]_s$, are studied. Also, selected deformation mode shapes are illustrated. The correctness of results is established using finite element software as well as by comparison with the existing results in the literature.