• Title/Summary/Keyword: Natural air-conditioning

Search Result 344, Processing Time 0.02 seconds

A Study of Heat Storage System with Phase Change Material - Inward Melting and Solidification in a Horizontal Cylinder - (상변화물질을 이용한 잠열축열조에 관한 기초 연구 - 수평원관내에서의 내향용융 및 응고열전달 실험 -)

  • Kim, I.G.;Cho, N.C.;Kim, J.G.;Lee, C.M.;Yim, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.319-329
    • /
    • 1989
  • Heat transfer phenomena during inward melting and solidification process of the phase change material were studied expertimentally. The phase change medium was 99% pure n-docosane paraffin ($C_{22}H_{46}$). The solid-liquid interface motion during phase change was recorded photographically. Measurements were made on the temperature, the solid-liquid interface, the melted or frozen mass and the various energy components stored or extracted from the cylinder wall. For melting, the experimental results reaffirmed the dominant role played by the conduction at an early stage, by the natural convection at longer time. For solidification, natural convection effects in the superheated liquid were modest and were confined to short freezing time. Although the latent energy is the largest contributor to the total stored or extracted energy, the aggregate sensible energies can make a significant contribution, especially at large cylinder wall superheating or subcooling, large initial phase change material subcooling or superheating.

  • PDF

A Numerical Study on the Flow and Heat Transfer Characteristics in a Kimchi Refrigerator (김치냉장고 내의 유동 및 열전달 특성에 관한 수치해석)

  • 윤준원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1078-1087
    • /
    • 2003
  • Kimchi refrigerator is a household electric appliance developed with the wholly domestic technology for maturing and keeping kimchi. However, the principle of keeping is not yet revealed obviously. This numerical study has been conducted to investigate the flow and heat transfer characteristics in a kimchi refrigerator. The effects of arrangement variation of a evaporation tube are examined. Also, the heat transfer characteristics through the insulation material are discussed in detail. The flow and temperature field was simulated using the commercial code of CFX-5.3. A natural convection flow is formed through about 5/6 region from the bottom within the keeping space and accordingly, the 90% region of kimchi containers satisfies the temperature requirement with 0$\pm$0.5$^{\circ}C$. The stagnant flow exists in the upper 1/6 region of the keeping space and accordingly, the stratified high temperature distributions appear in the upper region of kimchi containers. The upward shift of the start location of a evaporation tube improves the temperature concentration toward $0^{\circ}C$ but the pitch variation is of no effect. The heat fluxes on the insulation surfaces show two-dimensional distributions with being higher toward the center. Through the variation of insulation thickness, 3.5% saving of insulation material is obtained under the same heat transfer rate.

Experimental Investigation on the Enhancement of Methane Hydrate Formation in the Solid Transportation of Natural Gas (천연가스 고체화 수송을 위한 메탄 하이드레이트 충진율 증대에 대한 실험적 연구)

  • 김남진;정재성;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.863-870
    • /
    • 2002
  • Fossil fuels have been depleted gradually and new energy resource which can solve this shortage is needed now. Methane hydrate, non-polluting new energy resource, satisfies this requirement and considered the precious resource prevent the global warming. Fortunately, there are abundant resources of methane hydrate distribute in the earth widely, so developing the techniques that can use these gases effectively is fully valuable. the work presented here is to develop the skill which can transport and store methane hydrate. As a first step, the equilibrium point experiment has been carried out by increasing temperatures in the cell at fixed pressures. The influence of gas consumption rates under variable degree of subcooling, stirring and water injection has been investigated formation to find out kinetic characteristics of the hydrate. The results of present investigation show that the enhancements of the hydrate formation in terms of the gas/water ratio are closely related to operational pressure, temperature, degrees of subcooling, stirring rate, and water injection.

Natural Convection Heat Transfer from a Conducting Tube with Two Axial Fins to a Surrounding Cylinder (2개의 축방향핀을 가진 전도관과 원통사이의 자연대류 열전달)

  • Chung, H.S.;Lee, S.H.;Kim, C.W.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.3
    • /
    • pp.244-251
    • /
    • 1989
  • A numerical study has been performed on the natural convection heat transfer from a conducting tube with two axial fins to a surrounding cylinder. As increasing dimensionless fin length ($L_F$), the center of flow moves to the bottom of annulus and the recirculating flow rate is decreased. The maximum local Nusselt number of conducting tube appears at ${\theta}=180^{\circ}$ for $L_F=0.0$, but at ${\theta}=130^{\circ}$ for $L_F{\geq}0.3$ and that of outer cylinder appears at ${\theta}=13^{\circ}$ for $L_F{\leq}0.6$ but at ${\theta}=33^{\circ}$ for $L_F=1.0$. The fin temperature is decreased by increasing radial distance and the temperature distribution of the downward fin is generally less than that of the upward fin. By increasing fin length, the local Nusselt number of the upward fin appears negative values for $L_F=1.0$, but appears positive values for $L_F<0.8$, and that of the downward fin appears positive values.

  • PDF

Analysis of the Influence of Post-Combustion $CO_2$ Capture on the Performance of Fossil Power Plants (후처리를 이용한 $CO_2$ 포집이 화력 발전설비 성능에 미치는 영향 해석)

  • Tak, Sang-Hyun;Kim, Tong-Seop;Chang, Young-Soo;Lee, Dae-Young;Kim, Min-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.545-552
    • /
    • 2010
  • Research and development efforts to reduce $CO_2$ emission are in progress to cope with global warming. $CO_2$ emission from fossil fuel fired power plants is a major greenhouse gas source and the post-combustion $CO_2$ capture is considered as a short or medium term option to reduce $CO_2$ emissions. In this study, the application of the post-combustion $CO_2$ capture system, which is based on chemical absorption and stripping processes, to typical fossil fuel fired power plants was investigated. A coal fired plant and a natural gas fired combined cycle plant were selected. Performance of the MEA-based $CO_2$ capture system combined with power plants was analyzed and overall plant performance including the energy consumption of the $CO_2$ capture process was investigated.

Condensation heat transfer characteristics of hydrocarbon refrigerants R-290 and R-600a inside horizontal tubes (탄화수소계 냉매 R-290, R-600a의 수평관내 응축 열전달 특성에 관한 연구)

  • 박승준;박기원;노건상;정재천;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.20-25
    • /
    • 2000
  • An experimental study on the condensation heat transfer coefficients of R-22, R-290 and R-600a inside horizontal tube was performed. Heat transfer measurements were performed for smooth tube with inside diameter of 10.07 mm and outside diameter of 12.07 mm and inner grooved tube having 75 fins whose height is 0.25 mm. This study was performed for condensation temperatures were from 308 K to 323 K, and mass velocity of $51 kg/m^2s - 250kg/m^2s$. The test results showed that the local condensation heat transfer coefficients increased as the mass flux increased, and also the effect of mass flow rate on heat transfer coefficients of R-290 was less than R-22. In addition, heat transfer coefficient of R-22 increased to a larger extent than R-290 and R-600a as the mass flow rate increased. Average condensation heat transfer coefficients of natural refrigerants were superior to that of R-22. The present results had a good agreement with Cavallini-Zecchin's correlation for smooth and inner grooved tubes.

  • PDF

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

A Study on the Characteristics of Heat Source Temperature for Two-Well Geothermal System Using Numerical Simulation (수치 시뮬레이션을 이용한 복수정(Two-Well) 개방형 지열 시스템의 열원수 온도 변화 검토)

  • Cho, JeongHeum;Nam, YuJin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.207-212
    • /
    • 2015
  • The use of groundwater and ground_heat is one of the ways to use natural and renewable energy, and it has been considered as a technology to reduce greenhouse gas emissions and increase energy-saving. There are a few researches on the optimum design for the open-loop geothermal system. In this study, to develop the optimal design method numerical simulation of the open-loop geothermal system with two-wells was performed by a groundwater and heat transfer model. In this paper, a study was performed to analyze the system performance according to well distance and pumping flow rate. In the result, average heat exchange rate and heat source temperature were calculated and it was found that they were dependent on the pumping rate.

Analysis and design of LNG open rack vaporizer (LNG 개방래크 기화기의 해석 및 설계)

  • Park, J.S.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.189-197
    • /
    • 1997
  • The vaporizing characteristics of LNG(liquefied natural gas) via heat exchanger with sea water are analytically studied for an open rack vaporizer(ORV). This study is intended to supply the design data for the domestic fabrication of the corrosion-resistant vaporizer tube. A computational program is developed to predict the exit temperature of LNG for various conditions. In the program, thesimple and justifiable heat transfer models are selected for fully-developed internal flow of LNG, the star-shaped finned-tube, and the external falling films of sea water, as well as the possible ice formation and the fouling on the tube walls. It is found that the enongh corrugation inside of the tube wall is the most significant in the vaporizer performance for the current operating conditions. the effects of other design parameters on the heat exchanger between LNG and sea water are quantitatively presented.

  • PDF

A Line-by-Line Technique for Convection-diffusion Problem Implementing Finite Element Method (대류확산문제의 유한요소해석을 위한 Line-by-Line 해법)

  • Yoo, Jaisuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.2
    • /
    • pp.97-102
    • /
    • 1991
  • Finite element method has been developed recently for the solution of the convection-diffusion problems. Finite element method has several advantages over finite difference method, but its requirement of the larger memory size of the computer has prevented from wide application. In the present study, line-by-line technique has been implemented to finite element method to overcome this disadvantage. Two dimensional laminar natural convection in square cavity was chosen as an example in this study. The numerical result shows good agreement with bench mark solution and the size of the coefficient marix has been reduced drastically.

  • PDF