• 제목/요약/키워드: Natural Vibration analysis

검색결과 1,931건 처리시간 0.028초

보강 박스 구조물의 진돔 및 응력 해석 (The Vibration and Stress Analysis of Stiffened Box Structures)

  • 이영신;한재도;한유희;서정
    • 소음진동
    • /
    • 제6권2호
    • /
    • pp.147-161
    • /
    • 1996
  • The stress and vibration analysis of stiffened box structure is investigated by experiment and FEM analysis. The effects of stiffener number and box section shape on the structure response are presneted. The 1st natural frequency of stiffened folded byx structure with a stiffeners is 300 Hz. It is highter than that of stiffened rectangular box structure with 5 stiffeners, which is 251 Hz. Maximum deflection of folded box structure with thickness of 1 mm is lower than that of rectangular box structure with thickness of 1 or 2 mm. The natural frequencies of box structures are increeased with the number of stiffener, while the deflections are decreased with the number of box structures. When we compare between fundamental frequency (251 Hz) of stiffened (with 5 stiffeners) and one (137.64 Hz) of unstiffened rectangular box structure under clamped-clamped boundary condition, the ratio of frequency increase is 82%. The stiffened structures of 2 mm thickness can reduced to 120% of maximum deflection of 1 mm thickness rectangular box structures.

  • PDF

독립좌표연성법을 이용한 정사각형 구멍을 갖는 단순지지 원판의 자유진동해석 (Free Vibration Analysis of a Simply-Supported Circular Plate with a Concentric Square Hole by the Independent Coordinate Coupling Method)

  • 허석;곽문규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.967-972
    • /
    • 2008
  • This paper presents the free vibration analysis of a circular plate with a concentric square hole. The present problem deals with the numerical calculation of the natural frequencies and mode shapes of vibration of the structure by means of Independent Coordinate Coupling Method (ICCM). In this study, the boundary condition is the edge of the square hole is free and the outer circular plate is simply supported. Due to the geometric abnormality, this analysis does not permit an exact solution. Since the ICCM employs coordinate systems corresponding to each domain independently, the kinetic and potential energy expressions necessary for the Rayleigh-Ritz method can be easily obtained. Lastly, the kinematic relation is imposed. In this way, the eigenvalue problem can be easily set up. The numerical results show the efficacy of the ICCM and changes in natural frequencies and modes due to the square hole size.

  • PDF

동특성 개선을 위한 제트직기 구조물의 유한요소모델 개발 (A Development of Finite Element Model on Jet Loom Structures for the Improvement of Dynamic Characteristics)

  • 전두환;권상석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.824-829
    • /
    • 2002
  • Since many reciprocating and rotating components are attached to jet loom structure. it is exposed to a more vibration and moise problems than the other textile machinery. Thus the design of the jet loom frame is very important to characterize the dynamic response. In this study, a finite element model of jet loom main frame was developed to investigate the dynamic characteristics of jet loom. Two different finite element models of different main frames were constructed and these models were validated by the experimental results. Dynamic characteristics such natural frequencies and mode shapes were in good agreement between the finite element analysis and experimental results within 10% error range. It is expected that the result from this study can be used as the basic information of jet loom dynamic analysis and be extended for further analysis of forced response case.

  • PDF

Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis

  • Arefi, Mohammad;Zur, Krzysztof Kamil
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.615-623
    • /
    • 2020
  • In this paper, free vibration analysis of a functionally graded cylindrical nanoshell resting on Pasternak foundation is presented based on the nonlocal elasticity theory. A two-dimensional formulation along the axial and radial directions is presented based on the first-order shear deformation shell theory. Hamilton's principle is employed for derivation of the governing equations of motion. The solution to formulated boundary value problem is obtained based on a harmonic solution and trigonometric functions for various boundary conditions. The numerical results show influence of significant parameters such as small scale parameter, stiffness of Pasternak foundation, mode number, various boundary conditions, and selected dimensionless geometric parameters on natural frequencies of nanoshell.

기어 물림부의 스프링강성 변화와 구동기의 불균형을 고려한 2단 기어장치의 진동에 관한 연구 (A Study on the Vibration of 2-Stage Gear System Considering the Change of Gear Meshing Stiffness and Imbalance of Motor)

  • 정태형;이정상;최정락
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.8-14
    • /
    • 2001
  • We develop a method to analyze dynamic behavior off multi-stage gear train system. The example system consists of three shafts supported by ball bearings at the ends of them and two pairs of spur gear set. For exact analysis, the meshing tooth pair of gear set is modeled as spring and damper having time-dependent meshing stiffness and damping. The bearing is modeled as spring. The result of this analysis is compared to that of other model having mean mesh stiffness. The effect of the excitation force by the unbalance off rotor off motor is also analyzed. Finally, the change ova natural frequency of the whole system due to the change of an angle between three shafts is compared in each case, and from this analysis, the avoiding angle for design is advised.

  • PDF

등기하개념을 이용한 평면구조물의 자유진동해석 (Free Vibration Analysis of Plane Structures with Isogeometric Concept)

  • 이상진
    • 대한건축학회논문집:구조계
    • /
    • 제35권9호
    • /
    • pp.171-182
    • /
    • 2019
  • Isogeometric concept is introduced to carry out free vibration analysis of plane structures. The geometry of structures is represented by using non-uniform rational B-spline surface (NURBS) and its basis function is consistently used in the formulation of plane stress element. In addition, multi-patch strategy is introduced to deal with the openings in building. The performance of the present isogeometric plane stress element is investigated by using five numerical examples. From numerical results, it is found to be that the isogeometric concept can successfully identify reliable natural frequencies and associated mode shapes of plane structures with/without openings in efficient way.

구형 캡이 결합된 외팔 원통 쉘의 고유진동 해석 (Free Vibration Analysis of a Circular Cylindrical Shell with a Spherical Cap)

  • J.S. Yim;D.S. Sohn
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.355.2-355
    • /
    • 2002
  • The receptance method was applied for the analysis of a cylindrical shell with a spherical cap attached at an arbitrary axial position of the shell. The boundary condition of the shell considered here was clamped-free condition. Before the analysis of the shell/spherical cap combined structure, natural frequencies of the cap and the shell were calculated separately and then they were used in the calculation of the frequencies of the combined structure by the receptance method. (omitted)

  • PDF

Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems

  • Tan, Guojin;Shan, Jinghui;Wu, Chunli;Wang, Wensheng
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.551-565
    • /
    • 2017
  • In this paper, an analytical approach is proposed for determining vibration characteristics of cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems. This method is based on the Timoshenko beam theory, transfer matrix method and numerical assembly method to obtain natural frequencies and mode shapes. Firstly, the beam is considered to be divided into several segments by spring-mass systems and support points, and four undetermined coefficients of vibration modal function are contained in each sub-segment. The undetermined coefficient matrices at spring-mass systems and pinned supports are obtained by using equilibrium and continuity conditions. Then, the overall matrix of undetermined coefficients for the whole vibration system is obtained by the numerical assembly technique. The natural frequencies and mode shapes of a cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems are obtained from the overall matrix combined with half-interval method and Runge-Kutta method. Finally, two numerical examples are used to verify the validity and reliability of this method, and the effects of cracks on the transverse vibration mode shapes and the rotational mode shapes are compared. The influences of the crack location, depth, position of spring-mass system and other parameters on natural frequencies of non-uniform continuous Timoshenko beam are discussed.

보의 횡진동 공진특성을 이용한 초음파 진동절삭공구 설계 (Design of a Ultrasonic Cutting-tool Utilizing Resonance Condition of Transverse Vibration of Beam Type Structure)

  • 변진우;한상보
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.720-725
    • /
    • 2011
  • Most ultrasonic vibration cutting tools are operated at the resonance condition of the longitudinal vibration of the structure consisting of booster, horn and bite. In this study, a transverse vibration tool with beam shape is designed to utilize the vibration characteristics of the beam. Design point of the transverse vibration tool is to match the resonance frequency of the bite to the frequency of the signal to excite the piezoelectric element in the booster. The design process to match the natural frequency of the longitudinal vibration mode of the horn and that of the transverse vibration mode of the bite is presented. Dimensions of the horn and bite are searched by trend analysis through which the standard shapes of the horn and bite are determined. After the dimensions of each component of the cutting tool consisting of booster, horn and bite are determined, the assembled structure was experimentally tested to verify that true resonant condition is achieved and proper vibrational displacement are obtained to ensure that enough cutting force is generated.

전달행렬을 이용한 유동매체를 가진 배관요소의 진동특성 분석 (Vibration Characteristics of Pipe Element Containing Moving Medium by a Transfer Matrix)

  • 이영신;천일환
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.366-375
    • /
    • 1991
  • 본 연구에서는 보 이론(beam theory)의 변위함수(displacement function)를 도입하고 전달행렬법을 이용하여 각 배관요소의 경계조건에 대한 고유 진동수와 배관 의 불안정성을 일으키는 유체의 임계속도(critical velocity)를 계산 평가하고, 실험 으로 입증된 Blevins의 결과치와 비교하였다.