• Title/Summary/Keyword: Natural Vibration analysis

Search Result 1,931, Processing Time 0.031 seconds

Vibration Analysis of Bus Structure using Sensitivity Analysis of Bus Component Structures (부분 구조물의 민감도 분석을 이용한 버스차체의 진동분석)

  • Lee, Sang-Beom
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.355-361
    • /
    • 2009
  • In this paper, an analysis technique is presented for performing the effective design of bus structure. Sensitivity analysis is carried out for the natural frequency of component structures consisting of bus B.I.W. Local vibration modes of substructure, which large affect on the global vibration mode of the bus B.I.W., are obtained through the sensitivity analysis technique using the mathematical chain rule. And also the design variables, which are determined from the sensitivity analysis, are redesigned through optimum design process. The proposed analysis technique shows that the bus structure can be effectively designed considering the vibration characteristics.

  • PDF

Analytical Method to Analyze the Effect of Tolerance on the Modal Characteristic of Multi-body Systems in Dynamic Equilibrium (동적 평형위치에 있는 다물체계의 모드특성에 미치는 공차의 영향 분석을 위한 해석적 방법)

  • Kim, Bum-Suk;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.579-586
    • /
    • 2007
  • Analytical method to analyze the effect of tolerance on the modal characteristic of multi-body systems in dynamic equilibrium position is suggested in this paper. Monte-Carlo method is conventionally employed to perform the tolerance analysis. However, Monte-Carlo method spends too much time for analysis and has a greater or less accuracy depending on sample condition. To resolve these problems, an analytical method is suggested in this paper. Sensitivity equations for damped natural frequencies and the transfer function are derived at the dynamic equilibrium position. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivities of damped natural frequencies and the transfer function can be calculated.

Static equilibrium and linear vibration analysis of a high speed electric train system (고속전철 시스템의 정적평형 및 선형진동 해석)

  • 김종인;유홍희;황요하
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • A formulation to perform static equilibrium and linear vibration analysis is presented in this paper. The formulation employs minimum number of equations of motion which are derived by using a partial velocity matrix. The static equilibrium analysis is performed first, then the linear vibration analysis is performed at the static equilibrium position. By using the formulation presented in this paper, static equilibrium and linear vibration analysis of a high speed electric train system are performed. A single bogie system, a power car vehicle, and a train system which consists of five vehicles are analyzed, respectively. Natural frequencies and a few lowest mode shapes of the two are identified in this paper.

  • PDF

Dynamic Finite Element Modeling and Structural Vibration Analysis of a Gyrocopter (자이로콥터의 동적 유한요소모델링 및 구조진동해석)

  • Jung, Se-Un;Yang, Yong-Jun;Kim, Hyun-Jung;Je, Sang-Eon;Cho, Tae-Hwan;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.813-820
    • /
    • 2005
  • In this study, finite element modeling and structural vibration analyses of a gyrocopter have been conducted considering dynamic hub-loads due to rotating blades. For this research, 3D CATIA models for most mechanical parts are exactly prepared and assembled into the final aircraft configuration. Then the dynamic finite element model including several non-structural parts are constructed based on the exact 3D CAD data. Computational structural dynamics technique based on finite element method is applied using both MSC/NASTRAN and developed in-house code which can largely reduce the pre and postprocessing time of general transient dynamic analyses. Modal based transient and frequency response analyses are used to efficiently investigate vibration characteristics. The results include natural frequency comparison for different fuel and pilot conditions, fundamental natural mode shapes, frequency responses and transient acceleration responses of the present gyrocopter model.

  • PDF

Development of Vibration Analysis Algorithm for Joined Conical-cylindrical Shell Structures using Transfer of Influence Coefficient

  • Yeo, Dong-Jun;Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2013
  • This describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.

Vibration Characteristic Analysis of a Duel-cooled Fuel Rod according to the Cross-sectional Dimensions and the Span Length (이중냉각 연료봉의 단면치수와 스팬길이에 따른 진동특성해석)

  • Lee, Kang-Hee;Kim, Jae-Yong;Lee, Yung-Ho;Yoon, Kyung-Ho;Kim, Hyung-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.819-825
    • /
    • 2007
  • Vibration characteristics of an duel-cooling cylindrical fuel rod, which was proposed as a candidate design of fuel's cross section for the ultra-high burnup nuclear fuel, according to the cross-sectional dimensions and the number of supports or the span length were analytically studied. Finite element(FE) modeling for the annular cross sectional fuel was based on the methodology, that have been proven by the test verification, for the conventional PWR nuclear fuel rod. A commercial FEA code, ABAQUS, was used for the FE modeling and analysis. A planar beam element (B21) that uses a linear interpolation was used for the fuel rod and a linear spring element for the spring and dimple of the SG. Natural frequencies and mode shape were calculated according to the preliminary design candidates for the fuel's cross sectional dimension and the number of span. From the analysis results, the design scheme of the annular fuel compatible to the present PWR nuclear reactor core was discussed in terms of the number of supports and fuel's cross section.

Impacts of surface irregularity on vibration analysis of single-walled carbon nanotubes based on Donnell thin shell theory

  • Selim, Mahmoud M.;Althobaiti, Saad;Yahia, I.S.;Mohammed, Ibtisam M.O.;Hussin, Amira M.;Mohamed, Abdel-Baset A.
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.483-488
    • /
    • 2022
  • The present work is an attempt to study the vibration analysis of the single-walled carbon nanotubes (SWCNTs) under the effect of the surface irregularity using Donnell's model. The surface irregularity represented by the parabolic form. According to Donnell's model and three-dimensional elasticity theory, a novel governing equations and its solution are derived and matched with the case of no irregularity effects. To understand the reaction of the nanotube to the irregularity effects in terms of natural frequency, the numerical calculations are done. The results obtained could provide a better representation of the vibration behavior of an irregular single-walled carbon nanotube, where the aspect ratio (L/d) and surface irregularity all have a significant impact on the natural frequency of vibrating SWCNTs. Furthermore, the findings of surface irregularity effects on vibration SWCNT can be utilized to forecast and prevent the phenomena of resonance of single-walled carbon nanotubes.

Free Vibration Analysis of Circular Cylindrical Shells with Longitudinal, Interior Rectangular Plate (내부에 길이방향 사각판이 부착된 원통셸의 자유진동 해석)

  • 이영신;최명환;류충현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.205-210
    • /
    • 1997
  • The analysis of the free vibrations of a circular cylindrical shell with a logitudinal, interior rectangular plate is performed. The natural frequencies and the mode shapes of the combined shells are experimentally obtained by impact testing using an impact hammer and an accelerometer. The effects of the position of the plate on the frequencies and mode shapes of the combined system are examined. The experimental results are compared with a finite element analysis and show good agreement.

  • PDF