• 제목/요약/키워드: Natural Vibration analysis

검색결과 1,932건 처리시간 0.026초

개선된 자연변형률 쉘 요소를 이용한 판의 진동해석 (Dynamic Analysis of Plates using a Improved Assumed Natural Strain Shell Element)

  • 이원홍;한성천;박원태
    • 한국산학기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.2284-2291
    • /
    • 2010
  • 본 논문에서는 회전관성과 전단변형이 고려된 8절점 쉘 요소를 이용한 판의 진동해석을 연구하였다. 면내 잠김과 전단 잠김 현상을 극복하기 위하여 가정자연변형률 방법을 이용하였다. 8절점 쉘 요소의 성능 향상을 위해 새로운 보간점의 조합을 이용한 가정변형률 방법을 사용하였다. Reissner-Mindlin 이론에 근거한 개선된 1차 전단변형이론을 적용하여 회전관성을 고려하였으며 전단보정계수를 사용하지 않았다. 본 연구의 결과를 검증하기 위해 참고문헌의 직사각형 판의 동적 해석결과를 제시하였다. 해석결과는 참고문헌의 결과와 잘 일치하였다. 또한 감쇄효과가 고려된 판의 진동해석을 수행하였다.

영향계수의 전달을 이용한 탄성 지지된 티모센코 호의 자유진동 해석 (Free Vibration Analysis of Timoshenko Arcs with Elastic Supports Using Transfer of Influence Coefficient)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제21권2호
    • /
    • pp.70-76
    • /
    • 2017
  • When Timoshenko arcs considering the shear deformation and rotatory inertia have elastic supports, the authors analyze in-plane free vibration of them by the transfer influence coefficient method. This method finds the natural frequencies of them using the transfer of influence coefficient after obtaining the transfer matrix of arc element from numerical integration of the differential equations governing the vibration of arc. In this study, two computer programs were made by the transfer influence coefficient method and the transfer matrix method for analyzing free vibration of Timoshenko arcs. From numerical results of four computational models, we confirmed that the transfer influence coefficient method is a reliable method when analyzing the free vibration of Timoshenko arcs. In particular, the transfer influence coefficient method is a effective method when analyzing the free vibration of arcs with rigid supports.

화력 발전용 시험연소로의 연소시험 중의 연소진동 실험(I) (Experiments of Combustion Vibration in the Pilot Furnace for Fossil Power Plant under Combustion Test (I))

  • 주영호;김철홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.341-344
    • /
    • 2004
  • This paper presents results of test for combustion vibration in the pilot furnace for fossil power plant under combustion test. We measured static pressure variation in the pilot furnace together with air and fuel flow. From test results, it shows that vibration magnitude is affected by air and fuel flow. Also, a finite element analysis using a commercial S/W is performed to calculate acoustic mode of the pilot furnace. These results show that dominant frequency occurred is related to acoustic natural frequency of furnace. After this, it needs to be studied the relation between dominant frequency of combustion vibration and air flow rate.

  • PDF

영향계수의 전달에 의한 환원판이 결합된 원추형 셸의 진동해석 (Vibration Analysis of Conical Shells with Annular Plates Using Transfer of Influence Coefficient)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제19권5호
    • /
    • pp.52-59
    • /
    • 2015
  • This paper is presented for the free vibration of a conical shell with annular plates or circular plate using the transfer of influence coefficient. The governing equations of vibration of a conical shell, including annular plate, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-annular plates. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of finite element method, transfer matrix method and ANSYS. The conclusion show that the present method can accurately obtain natural vibration characteristics of the conical shell with annular or circle end plates.

모드해석을 이용한 플루가스 냉각기의 진동 저감 방법에 관한 연구 (A Study on the Vibration Reduction of Flue Gas Cooler Using Modal Analysis)

  • 이부윤;김원진
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.664-670
    • /
    • 2012
  • In this work, vibration characteristics of a flue gas cooler(FGC) for a heavy oil upgrading are experimentally analyzed and an effective method is proposed to reduce the vibration level. Firstly, the vibration under the operation condition of the FGC is measured and analyzed to identify the generation phenomena of vibration. And the displacement of the outer wall of the FGC is also analyzed to identify dominant frequencies of vibration. Secondly, an effective design to reduce the vibration is suggested by using the modal analysis. Consequently an improved design of the FGC gas cooler, which has lower vibration level, is obtained and then verified though the analysis and test.

차량용 서브프레임의 동특성 해석 (Dynamic Analysis of Vehicle Sub-frame)

  • 이봉현;김찬중;김기훈
    • 한국소음진동공학회논문집
    • /
    • 제15권12호
    • /
    • pp.1332-1339
    • /
    • 2005
  • The vibration of Powertrain are one of the import design characteristics of a vehicle. Powertrain is mostly mounted to the front subframe and powertrain mounting has an important role in determining the vehicle vibration characteristics. In this paper, the accuracy of the vibration analysis for the front subframe is discussed. The dynamic characteristic of subframe are measured from vehicle test and the finite element model updating are performed that natural frequency, mass and MAC of the experimental and theoretical modal analysis are compared. The subframe mounting stiffness are obtained the iteration method based on the vibration of subframe from vehicle test. Finally, the result of dynamic analysis which is operated dynamic load is compared with experimental one of vehicle test.

탄성지반을 고려한 집중질량뜰 갖고 면내력이 작용하는 변단면 보강후판의 진동해석 (Vibration Analysis of Tapered Thick Plate with Concentrated Mass Subjected to In-plane Force on Elastic Foundation)

  • 이용수;김일중;오숙경
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.1033-1041
    • /
    • 2008
  • The purpose of this paper is to investigate natural frequencies of tapered thick plate with concentrated masses subjected to in-plane force on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. Finite element analysis of rectangular plate is done by using rectangular finite element with 8-nodes. For analysis, plates is supported on pasternak foundation. The Winkler parameter is varied with 10, 102, the shear foundation parameter is 5. The taper ratio is applied as 0.0, 0.25, 0.5 and the ratio of the concentrated mass to plate mass as 0.25, 0.5 respectively. As results, we can see that when stiffener's sizes or foundation parameter are larger, the natural frequency increases, and when the concentrated mass or taper ratio or in-plane stress is larger, the natural frequency decreases.

발전용 보일러 후부 전열면 소음진동 저감에 관한 연구 (A Case Study on the Reduction of Noise and Vibration at the Backpass Heat Surface in the Power Plant Boiler)

  • 이경순;이태구;문승재;이재헌
    • 플랜트 저널
    • /
    • 제4권3호
    • /
    • pp.54-59
    • /
    • 2008
  • The resonance of boiler is caused by exciting force in the gas path and it generates the vibration by the harmony of boiler's dimensional factor. According to trending toward the boiler of increasing capacity and a bigger size, it has a problem of the vibration at back-pass heating surfaces. We can predict such vibrations as comparison between vortex frequency and gas column's natural frequency. We can't rely on the method for the past decades because of changing parameters, such as an allowable error, gas temperature, gas velocity, Strouhal number. We can reduce the vibration to use the seasoning effect and change the operating condition in coal fired boiler but it's not essential solution. When the vibration occurred in the model boiler, we must measures the acoustic pressure and frequency of places for considering the means. So far, we confirmed the problem from field measures and theoretical analysis about the acoustic vibration of boiler. We installed anti-acoustic baffle in a existing boiler to change the acoustic natural frequency at the cavity, which results in reducing the acoustic vibration. The first, we prove that the acoustic resonance is caused by harmonizing vortex shedding frequency of tube heat surface with acoustic natural frequency of cavity in the range of 650~750 MW loads. The second, the acoustic resonance at the back-pass heating surface has the third order of acoustic natural frequency at the second economizer. We install five anti-acoustic baffles at the second economizer to reducing the resonance. We confirm considerably reducing the acoustic vibration of boiler during the commercial boiler.

  • PDF

전달행렬법을 이용한 3차원 파이프 계의 진동해석 (Vibration Analysis of Three-Dimensional Piping System by Transfer Matrix Method)

  • 이동명
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.110-116
    • /
    • 1998
  • For the vibration analysis of 3-dimensional piping system containing fluid flow, a transfer matrix method is presented. The fluid velocity and pressure were considered, that coupled to longitudinal and flexural vibrations. Transfer matrices and point matrices were derived from direct solutions of the differential equations of motion of pipe conveying fluids, and the variations of natural frequency with flow velocity for 3-dimensional piping system were investigated.

  • PDF

전개하는 막대의 종진동 해석 (Longitudinal Vibration Analysis of Deploying Rods)

  • 조은형;정진태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.625-630
    • /
    • 2000
  • In this paper, the governing equation and the boundary conditions of deploying rods are derived by using Hamilton's principle. The Galerkin method using the comparison function of the instantaneous natural modes is adopted by which the governing equation is discretized. Based on the discretized equations, the time integration analysis is performed and the longitudinal vibrations for the deploying and the retrieving velocity are analyzed.

  • PDF