• 제목/요약/키워드: Natural Modes

검색결과 697건 처리시간 0.024초

Dynamic properties of a building with viscous dampers in non-proportional arrangement

  • Suarez, Luis E.;Gaviria, Carlos A.
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1241-1260
    • /
    • 2015
  • Any rational approach to define the configuration and size of viscous fluid dampers in a structure should be based on the dynamic properties of the system with the dampers. In this paper we propose an alternative representation of the complex eigenvalues of multi degree of freedom systems with dampers to calculate new equivalent natural frequencies. Analytical expressions for the dynamic properties of a two-story building model with a linear viscous damper in the first floor (i.e. with a non-proportional damping matrix) are derived. The formulas permit to obtain the equivalent damping ratios and equivalent natural frequencies for all the modes as a function of the mass, stiffness and damping coefficient for underdamped and overdamped systems. It is shown that the commonly used formula to define the equivalent natural frequency is not applicable for this type of system and for others where the damping matrix is not proportional to the mass matrix, stiffness matrix or both. Moreover, the new expressions for the equivalent natural frequencies expose a novel phenomenon; the use of viscous fluid dampers can modify the vibration frequencies of the structure. The significance of the new equivalent natural frequencies is expounded by means of a simulated free vibration test. The proposed approach may offer a new perspective to study the effect of viscous dampers on the dynamic properties of a structure.

플로팅 링 베어링으로 지지된 터보차저 로터의 안정성 해석 (Stability Analysis of Floating Ring Bearing Supported Turbocharger)

  • 이동현;김영철;김병옥
    • Tribology and Lubricants
    • /
    • 제31권6호
    • /
    • pp.302-307
    • /
    • 2015
  • The use of turbocharger in internal combustion engines has increased as it is a key components for improving system efficiency without increasing engine size. Because of increasing demand, many studies have evaluated rotordynamic performance so as to increase rotation speed. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a floating ring bearing. We constructed rotor model by using the finite element method and approximated bearings as being infinitely short. In the linear model, we considered fluid film force as stiffness and damping element. In nonlinear analysis, calculation of the fluid film force involved solving the time dependent Reynolds equation. We verified the developed model by comparing the results to those of previous research. The analysis results show that there are four unstable modes, which are rigid body modes combining ring and rotor motion. As the rotating speed increases, the logarithmic decrement shows that certain unstable modes goes into the stable area or the stable mode goes into the unstable area. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis frequency jump phenomenon demonstrated in several experimental studies appears. The analysis results also showed that frequency jump phenomenon occurs when the vibration mode changes and the sequence of unstable mode matches the linear analysis result. However, the natural frequency predicted using linear analysis differs from those obtained using nonlinear analysis.

앙상블 경험적 모드 분해법을 사용한 태평양의 지역별 해수면 변화 분석 (Regional Sea Level Variability in the Pacific during the Altimetry Era Using Ensemble Empirical Mode Decomposition Method)

  • 차상철;문재홍
    • Ocean and Polar Research
    • /
    • 제41권3호
    • /
    • pp.121-133
    • /
    • 2019
  • Natural variability associated with a variety of large-scale climate modes causes regional differences in sea level rise (SLR), which is particularly remarkable in the Pacific Ocean. Because the superposition of the natural variability and the background anthropogenic trend in sea level can potentially threaten to inundate low-lying and heavily populated coastal regions, it is important to quantify sea level variability associated with internal climate variability and understand their interaction when projecting future SLR impacts. This study seeks to identify the dominant modes of sea level variability in the tropical Pacific and quantify how these modes contribute to regional sea level changes, particularly on the two strong El $Ni{\tilde{n}}o$ events that occurred in the winter of 1997/1998 and 2015/2016. To do so, an adaptive data analysis approach, Ensemble Empirical Mode Decomposition (EEMD), was undertaken with regard to two datasets of altimetry-based and in situ-based steric sea levels. Using this EEMD analysis, we identified distinct internal modes associated with El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) varying from 1.5 to 7 years and low-frequency variability with a period of ~12 years that were clearly distinct from the secular trend. The ENSO-scale frequencies strongly impact on an east-west dipole of sea levels across the tropical Pacific, while the low-frequency (i.e., decadal) mode is predominant in the North Pacific with a horseshoe shape connecting tropical and extratropical sea levels. Of particular interest is that the low-frequency mode resulted in different responses in regional SLR to ENSO events. The low-frequency mode contributed to a sharp increase (decrease) of sea level in the eastern (western) tropical Pacific in the 2015/2016 El $Ni{\tilde{n}}o$ but made a negative contribution to the sea level signals in the 1997/1998 El $Ni{\tilde{n}}o$. This indicates that the SLR signals of the ENSO can be amplified or depressed at times of transition in the low-frequency mode in the tropical Pacific.

Flexural natural vibration characteristics of composite beam considering shear deformation and interface slip

  • Zhou, Wangbao;Jiang, Lizhong;Huang, Zhi;Li, Shujin
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.1023-1042
    • /
    • 2016
  • Based on Hamilton's principle, the flexural vibration differential equations and boundary conditions of the steel-concrete composite beam (SCCB) with comprehensive consideration of the influences of the shear deformation, interface slip and longitudinal inertia of motion were derived. The analytical natural frequencies of flexural vibration were compared with available results previously observed by the experiments, the results calculated by the FE model and the other similar beam theories available in the open literatures. The comparison results showed that, the calculation results of the analytical and Timoshenko models had a good agreement with the results of the experimental test and FE model. Finally, the influences of shear deformation and interface slip on the flexural natural frequencies of the SCCB were discussed. The shear deformation effect increases with the increase of the mode orders of flexural natural vibration, and the flexural natural frequencies of the higher mode orders ignoring the influence of shear deformations effect would be overestimated. The interface slip effect decrease with the increase of the mode orders of flexural natural vibration, and the influence of the interface slip effect on flexural natural frequencies of the low mode orders is significant. The influence of the degree of shear connection on shear deformation effect is insignificant, and the low order modes of flexural natural vibration are mainly composed of the rotational displacement of cross sections.

Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline

  • Bozyigit, Baran;Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.65-77
    • /
    • 2017
  • The free vibration analysis of fluid conveying Timoshenko pipeline with different boundary conditions using Differential Transform Method (DTM) and Adomian Decomposition Method (ADM) has not been investigated by any of the studies in open literature so far. Natural frequencies, modes and critical fluid velocity of the pipelines on different supports are analyzed based on Timoshenko model by using DTM and ADM in this study. At first, the governing differential equations of motion of fluid conveying Timoshenko pipeline in free vibration are derived. Parameter for the nondimensionalized multiplication factor for the fluid velocity is incorporated into the equations of motion in order to investigate its effects on the natural frequencies. For solution, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Timoshenko beam theory. After the analytical solution, the efficient and easy mathematical techniques called DTM and ADM are used to solve the governing differential equations of the motion, respectively. The calculated natural frequencies of fluid conveying Timoshenko pipelines with various combinations of boundary conditions using DTM and ADM are tabulated in several tables and figures and are compared with the results of Analytical Method (ANM) where a very good agreement is observed. Finally, the critical fluid velocities are calculated for different boundary conditions and the first five mode shapes are presented in graphs.

Contact buckling behaviour of corrugated plates subjected to linearly varying in-plane loads

  • Dong, Jianghui;Ma, Xing;Zhuge, Yan;Mills, Julie E.
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.333-348
    • /
    • 2018
  • An analytical method is developed for analysing the contact buckling response of infinitely long, thin corrugated plates and flat plates restrained by a Winkler tensionless foundation and subjected to linearly varying in-plane loadings, where the corrugated plates are modelled as orthotropic plates and the flat plates are modelled as isotropic plates. The critical step in the presented method is the explicit expression for the lateral buckling mode function, which is derived through using the energy method. Simply supported and clamped edges conditions on the unloaded edges are considered in this study. The acquired lateral deflection function is applied to the governing buckling equations to eliminate the lateral variable. Considering the boundary conditions and continuity conditions at the border line between the contact and non-contact zones, the buckling coefficients and the corresponding buckling modes are found. The analytical solution to the buckling coefficients is also expressed through a fitted approximate formula in terms of foundation stiffness, which is verified through previous studies and finite element (FE) method.

시간평균 홀로그래픽 간섭계를 이용한 경계조건의 변화에 따른 원형평판의 진동에 관한 연구 (The Research on the Vibration of the Circular Plate for Varying Free Arc Angles by Time-Average Holographic Interferometry)

  • 이기백;양장식;나종문
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1900-1907
    • /
    • 1992
  • 본 연구에서는 원형평판의 경계조건을 일부분은 고정단으로 일부분은 자유단 으로 구성하여 자유단각 .alpha.(Fig.4 참조)를 0˚, 30˚, 60˚, 90˚, 120˚, 150˚, 180˚로 변화시킴에 따른 진동모드를 시간평균 홀로그래픽 간섭계(time-average holographic interferometry)를 이용해 분석하고 자유단의 변화에 따른 고유진동수의 비를 비교하였고, 레이저 도플러 유속계(LDV)를 변형한 레이저 도플러 진동계(laser doppler vibrometer)로 원형평판의 진동변위와 시간평균 홀로그래픽 간섭계로 구한 진 동변위를 비교하였다.

이방성을 고려한 회전기기 고정자 코어의 동적 모델링 (Dynamic Modeling of the Stator Core of the Electrical Machine Using Orthotroic Characteristics)

  • 김희원;이수목;김관영;배종국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.1044-1048
    • /
    • 2002
  • The experimental modal testing has been carried out for the stator of a generator to confirm the vibrational mode shapes and the corresponding natural frequencies. The model of the stator for the vibration analysis was developed and a series of vibration analyses was carried out. And the properties of the solid element were updated to reduce the differences of the natural frequencies between the measured and the analysed. In the vibration anlyses, the axial, radial and circumferential properties of the solid element were separately varied to take into account the orthotropic effect of the laminated structure and to match the primary modes of the stator core which were extracted from the modal testing. After several attempts to match the measured natural frequencies and model shapes, the properties of the stator model were determined. Comparison of the vibration analyses results based on the determined properties showed fairly good coincidence with the measured data.

  • PDF

Structural Design for Vibration Reduction in Brushless DC Stator

  • Jafarboland, Mehrdad;Farahabadi, Hossein Bagherian
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1842-1850
    • /
    • 2017
  • Reducing the noise and vibration of the BLDC motors is very essential for some special applications. In this paper, a new structural design is introduced to increase the natural frequencies of the stator in BLDC motors as increasing the natural frequencies can reduce the severe effects of the structural resonances, including high levels of noise and vibration. The design is based on placing a single hole on definite regions at the stator cross sectional area (each region contains one tooth and its upper parts in the stator yoke) in an optimum way by which the natural frequencies at different modes are shifted to the higher values. The optimum diameter and locations for the holes are extracted by the Response Surface Methodology (RSM) and the modal analyses in the iterative process are done by Finite Element Method (FEM). Moreover, the motor performance by the optimum stator structure is analyzed by FEM and compared with the prototype motor. Preventing the stator magnetic saturation and the motor cogging torque enhancement are the two constraints of the optimization problem. The optimal structural design method is applied experimentally and the validity of the design method is confirmed by the simulated and experimental results.

Theoretical Studies on Dicyanoanthracenes as Organic Semiconductor Materials: Reorganization Energy

  • Park, Young-Hee;Kim, Yun-Hi;Kwon, Soon-Ki;Koo, In-Sun;Yang, Ki-Yull
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1649-1656
    • /
    • 2010
  • Internal reorganization energy due to the structural relaxation in hole or electron hopping mechanism is one of the measurements of key indices in designing an organic thin film transistor (OTFT) for flexible display devices. In this study, the reorganization energies of dicyanoanthracenes for the hole and electron transfer were estimated by adiabatic potential energy surface and normal mode analysis method in order to examine the effect on the energies for the positional variation of the cyano substituents in the anthracene as a protocol of acenes to design an organic field effect transistor. The reorganization energy for the hole transfer was reduced considerably upon cyanation of anthracene, especially at the 9,10-positions of anthracene, and the origin of the reduction was interpreted in terms of understanding the coupling of vibrational modes to the hole transfer.