• Title/Summary/Keyword: Natural Insulation

Search Result 177, Processing Time 0.028 seconds

Aging Evaluation of Polymer Insulator Housing with UV Exposure (자외선 노출에 따른 폴리머애자 하우징의 열화특성평가)

  • 이병성;한재홍;김찬영;한용희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.214-217
    • /
    • 1999
  • Polymeric composite insulators have been in use for outdoor insulation. However, our knowledge about their long-term performance in a outdoor environment is still very limited. Especially, these insulator are subjected to the environmental stress such as ultraviolet radiation. Hence, in this paper. the influence of UV radiation on the aging of the shed materials was evaluated. For the aging evaluation, these insulators studied by experiment methods such as contact angle measurement. oxidation induced time. SEM/EDX, FTRI-ATR, tracking test for the different insulator samples. With the increased UV exposure time, samples are shown to exhibit degradation comparable to those of new ones

  • PDF

The Characteristics of Artificial Contamination of Distribution Polymer Insulators Used for Outdoor Insulation (옥외에서 사용되는 배전용 폴리머애자의 인공오손 특성)

  • 이병성;한재홍;김찬영;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.595-597
    • /
    • 2000
  • Poymeric insulators using in an heavy contamination area are easily attached to contaminants such as salt and by-products of industrial processes. To understand its effect on contaminants adhered to these insulators, we manufactured slurry mixed by some kaolin and salt as artificial contaminated solution. And then put samples in its slurry, for about one minute. And these samples are dried in natural condition for 6 days. We measured the degree of contaminant, AC leakage current for these contaminated samples.

  • PDF

Reformation of Dielectric Property in interface between epoxy and Cu (Epoxy-Cu간 접촉면에서의 절연특성 개선)

  • 송재주;김성홍;정남성;황종선;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.9-12
    • /
    • 2000
  • Insulators for high-voltage and large-power should be endured mechanically the weight of mold bushing itself and the force of pushed from contact with circuit breaker and conductor. But dielectric breakdown could be occurred result from the external circumstances and internal factors such as chemical reaction, partial discharge, change of temperature and the relation of temperature-time in process of casting. Therefore, to get rid of external and internal factors of dielectric breakdown. Furthermore, to prevent the internal cracks, void, cavity which resulted from the contraction originated on the interface between copper and epoxy resin, formed semi-conductive layer with partially carbon painted on copper bar. The PD properties and the insulation qualities of epoxy molded insulators were improved by roles of cushions for the direction of diameter and natural sliding effects as like separated from conductor for the direction of length.

  • PDF

A Thermal Analysis of 1 kW Hydrogen Linear Generator (1kW급 수소리니어 발전기 열해석)

  • Yang, Si-Won;Lee, Jae-Sung;Kweon, Ki-Yeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.29-32
    • /
    • 2006
  • Recently, many researches of the alternative and renewable energy have introduced due to the increasing oil price, the limited natural resources and the environmental pollution. In case of hydrogen energy, it has some merits, which can be substituted the existing the fossil fuel because of no contaminants from the combustion and the chemical reaction. We have been developing 1kW Hydrogen Linear Generator. In this paper, the thermal characteristic of this prototype linear generator has been investigated and obtained reliable analysis results comparing with experimental measurements. Especially, it is predicted that in case of 1kW, 60Hz test sample, the results satisfy with the temperature standards of H type insulation, which is shown average $69.0^{\circ}C$ temperature distribution at the coil.

  • PDF

Application of Finite Element Method and Taguchi Method to Reduce Floor Impact Vibration in Apartment Buildings (공동주택의 바닥충격진동 저감을 위한 유한요소법 및 다구찌법의 활용)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.385-388
    • /
    • 2005
  • Finite element method and Taguchi method were used to reduce the floor impact vibration of the reinforced concrete slab in the apartment buildings. At first, experimental results show that sound peak components to influence the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab, and there is a high linear relation between floor impact vibration and sound. The tables of orthogonal arrays were used for finite element analysis with 5 factors related to slab shape parameters and its results were analyzed by statistical method. The most effective factor to reduce the floor impact vibration was the length of living/kitchen room and the floor impact vibration was predicted by 30% reduction in the acceleration peak by the optimal design values of the factors.

  • PDF

Mechanical Behavior of Polymer Foam Reinforced with Silica Aerogel (실리카 에어로겔을 첨가한 폴리머 폼의 기계적 특성)

  • Ahn, Jae-Hyeok;Kim, Jeong-Hyeon;Kim, Jeong-Dae;Park, Sungkyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.413-418
    • /
    • 2017
  • In the present study, silica-aerogel-polyurethane foams were synthesized to improve the mechanical characteristics and insulation performance of the polyurethane foam applied to a liquefied natural gas carrier at a cryogenic temperature of $-163^{\circ}C$. A silica-aerogel-polyurethane foam bulk was prepared using a homogenizer by varying the weight ratio of the silica aerogel (0, 1, 3, and 5 wt%), while maintaining the contents of the polyol, isocyanate, and blowing agent constant. Compression tests were performed at room and cryogenic temperatures to compare the mechanical properties of the silica-aerogel polyurethane foams. The internal temperature of the universal testing machine was maintained through the cryogenic chamber. The thermal conductivity of the silica-aerogel-polyurethane foam was measured using a heat flow meter to confirm the insulation performance. In addition, the effect of the silica aerogels on the cells of the polyurethane foam was investigated using FE-SEM and FTIR. From the experimental results, the 1 wt% silica aerogel polyurethane foam showed outstanding mechanical and thermal performances.

Technical Measures for Improving Energy Efficiency in Historic Buildings -Focused on Researches and Case Studies of the West- (역사적 건축물의 에너지 효율 향상을 위한 계획기법 -서양의 연구동향 및 사례를 중심으로-)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • This study is to research technical measures for improving energy efficiency in the conservation and reuse of historic buildings focused on the recent research trends and case studies of the west. These measures are broadly classified into three types, the passive measures for saving energy and increasing comfort, the most cost-effective energy saving strategies, and the renewable energy sources. Firstly, the passive measures are divided into the elements and systems. The passive elements are awnings and overhanging eaves, porches, shutters, storm windows and doors, and shade trees. There are also the natural ventilation systems such as the historic transoms, roofs and attics to improve airflow and cross ventilation to either distribute, or exhaust heat. Secondly, the most cost-effective energy efficiency strategies are the interior insulation, airtightness and moisture protection, and the thermal quality improvement of windows. The energy efficiency solutions of modern buildings are the capillary-active interior insulation, the airtightness and moisture protection of interior walls and openings, and the integration of the original historic window into the triple glazing. Beyond the three actions, the additional strategies are the heat recovery ventilation, and the illumination system. Thirdly, there are photovoltaic(PV) and solar thermal energy, wind energy, hydropower, biomass, and geothermal energy in the renewable energy sources. These energy systems work effectively but it is vital to consider its visual effect on the external appearance of the building.

Study on Microstructure and Physical Properties of PUF by the Impeller Type of Agitator (교반기의 임펠러 형태에 따른 폴리우레탄 폼의 미세구조와 물성 연구)

  • Lee, Chae-Rim;Kim, Jung Soo;Park, Byeongho;Um, Moon-Kwang;Park, Teahoon
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • Polyurethane foam (PUF) can be manufactured in soft, semi-rigid, and hard forms, so it is used in various fields industrially. Among them, rigid PUF has excellent mechanical properties and low thermal conductivity, and is used as a thermal insulation material for buildings and as a cold insulation material in the natural gas transportation field. In this field, there is a steady demand on higher mechanical strength and lower thermal conductivity. In this study, a rigid PUF was manufactured, and the microstructure and physical properties were studied according to the impeller type (propeller, dispersed turbine) of the agitator. Through FE-SEM and Micro-CT analysis, it was confirmed that the average pore size of the foam manufactured with the dispersed turbine was 21.5% smaller than that of the pore made by the propeller. The compressive strength was improved by 15.4%, and the thermal conductivity decreased by 3.1% in the foam with small pores. This result can be utilized for fabricating PUF composites.

A Study on the Visualization of Ice-formation Phenomena of Bath Water to Decide Maintenance Period of Gas Heater (가스히터 보수주기 결정을 위한 히터내부 열전달 매체액 결빙현상 가시화에 관한 연구)

  • Lee J. H.;Ha J. M.;Sung W. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.1-8
    • /
    • 2001
  • This study was carried out for the purpose of determination of maintenance period and investigation of weak point due to freeze when the gas heater of KOGAS valve station Is not operated in winter season. 3-dimensional non-linear numerical simulation was conducted in order to predict the time and location which bath water in heater reaches to ice point. FLUENT V 5.0, commercial code, is used for thermal fluid flow analysis. We thought this was problem of heat conduction solving the energy equation and modeled gas heater by using the real geometry and scale for performing the 3-dimensional simulation. It was analyzed complex heat transfer phenomena considering convection due to air on surface, conduction in insulation material, natural convection of liquid in heater and heat loss through the pipe.

  • PDF

Study on Adiabatic Performance of LNG Storage Tank for Vehicles (차량용 LNG연료용기의 단열성능에 관한 연구)

  • Han, Jeong-Ok;Lee, Young-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • Natural gas vehicles are being applied to city buses for improving air quality in metropolitan and have proved the effective way to reduce the pollutant emissions. Liquified Natural Gas(LNG) has also attempted a vehicle fuel in order to raise the fuel storage density that is a disadvantage of Compressed Natural Gas(CNG). This paper described insulation characteristic of a LNG storage tank. From the results, adiabatic coefficient of a tested tank was around $40J/h{\cdot}^{\circ}C{\cdot}m^2$ and it was the lower level than gas safety regulation limit. Two experimental methods were adopted to justify the evaluation results and they were revealed that the results were very similar to each other. Also, through testing relief valve operation characteristic it was investigated venting amount of boiled off gas.

  • PDF