• Title/Summary/Keyword: Natural Fiber Reinforced Composite

Search Result 108, Processing Time 0.029 seconds

Mechanical Properties of Sisal Fiber Reinforced Composites on Surface Treatment and Temperature (사이잘섬유강화 복합재료의 표면처리와 환경온도에 따른 기계적 특성)

  • Song, Jun Hee;Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.471-476
    • /
    • 2008
  • There has been a growing interest for the use of natural fibers in composite applications due to their low cost, environmental friendliness, and good mechanical properties. It was demonstrated to determine the characteristic of tensile behaviors under the variation of test temperature on sisal fiber reinforced polymer composites by RTM process. Especially, the permanganate-treated-fibers improved tensile strength by increasing the coherence with matrix. Material deformation is restricted to increment of cohesion for surface treatment of fiber and then elongation decreas.

Mechanical Properties of Jute Fiber Reinforced Thermosetting Composites (황마섬유 보강 열경화성 복합재료의 기계적 특성)

  • Lee, C.H.;Song, J.E.;Nam, W.S.;Byun, J.H.;Kim, B.S.;Hwang, B.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.111-115
    • /
    • 2005
  • Recently, natural fibers draw much interests in composite industry due to low cost, light weight, and environment-friendly characteristics compared with glass fibers. In this study, mechanical properties were evaluated for two extreme cases of jute fiber orientations, i.e. the unidirectional yarn composites and the felt fabric composites. Samples of jute fiber composites were fabricated by RTM process using epoxy resin, and tensile, compression, and shear tests were conducted. As can be expected, unidirectional fiber specimens in longitudinal direction showed the highest strength and modulus. Compared with glass/epoxy composites of the similar fabric architecture and fiber volume fraction, the tensile strength and modulus of jute felt/epoxy composites reached only 40% and 50% levels. However, the specific tensile strength and modulus increased to 80% and 90% of the glass/epoxy composites. The main reason for the poor mechanical properties of jute composites is associated with the weak interfacial bonding between fiber and matrix. The effect of surface treatment of jute fibers on the interfacial bonding will be examined in the future work.

  • PDF

Comparative Study on Mechanical Properties of Sonicated Bamboo and Kenaf Fiber Composite (초음파 처리된 대나무섬유와 케냐프섬유 복합재의 기계적 특성 비교 연구)

  • Lee, Su Kyoung;Park, Eun Young;Park, Tae Sung;An, Seung Kook
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.274-280
    • /
    • 2020
  • This study compared the mechanical properties of bamboo fiber composites and kenaf fiber composites through physical treatment (ultrasonic treatment). Kenaf, a composite of PP reinforced with bamboo fiber, was made using injection molding technology. PP was used as a binder and the ultrasonic treatment time of bamboo and kenaf was increased by 30 minutes to compare and study various mechanical properties of bamboo and kenaf composites through physical treatment. Interfacial properties such as internal cracks and internal structure of the wave cross section were confirmed using a scanning electron microscope (SEM). As a result of the ultrasonic treatment, most of the characteristics were fragile as the ultrasonic treatment time was increased, and it was confirmed that the natural characteristics of the twisted fibers had a great influence on the characteristics of the composite material.

Multiple cracking analysis of HTPP-ECC by digital image correlation method

  • Felekoglu, Burak;Keskinates, Muhammer
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.831-848
    • /
    • 2016
  • This study aims to characterize the multiple cracking behavior of HTPP-ECC (High tenacity polypropylene fiber reinforced engineered cementitious composites) by Digital Image Correlation (DIC) Method. Digital images have been captured from a dogbone shaped HTPP-ECC specimen exhibiting 3.1% tensile ductility under loading. Images analyzed by VIC-2D software and ${\varepsilon}_{xx}$ strain maps have been obtained. Crack widths were computed from the ${\varepsilon}_{xx}$ strain maps and crack width distributions were determined throughout the specimen. The strain values from real LVDTs were also compared with virtual LVDTs digitally attached on digital images. Results confirmed that it is possible to accurately monitor the initiation and propagation of any single crack or multiple cracks by DIC at the whole interval of testing. Although the analysis require some post-processing operations, DIC based crack analysis methodology can be used as a promising and versatile tool for quality control of HTPP-ECC and other strain hardening composites.

Vibration Control of a Composite Plate with Piezoelectric Sensor and Actuator (압전센서와 액츄에이터를 이용한 복합재 평판의 진동제어)

  • 권대규;유기호;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.207-210
    • /
    • 2002
  • This paper is concerned with the experiments on the active vibration control of a plate with piezoceramic sensors and actuators. The natural frequencies of the composite plate featured by a piezo-film sensor and piezo-ceramic actuator are calculated by using the modal analysis method. Modal coordinates are introduced to obtain the state equations of the structural system. Six natural frequencies were considered in the modelling, because robust control theory which has inherent robustness to structured uncertainty is adopted to suppress the transients vibrations of a glass fiber reinforced(GFR) composite beam. A robust controller satisfying the nominal performance and robust performance is designed using robust theory based on the structured singular value. Simulations were carried out with the designed controller and effectiveness of the robust control strategy was verified by results.

  • PDF

Optimal Ply Design of Laminated Composite Cantilever plate Considering Vibration (진동을 고려한 복합적층 외팔평판의 최적적층설계)

  • Gu, K.M.;Noh, Y.H.;Kim, D.Y.;Hong, D.K.;Ahn, C.W.;Han, G.J.;Park, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1660-1665
    • /
    • 2003
  • On this study, we improved the efficiency applying algorithm that is repeatedly using orthogonal array in discrete design space and filling a defect of gradient method in continuous design space. we showed optimal ply angle that maximized 1st natural frequency of CFRP laminated composite cantilever plate by each aspect ratio. A finite element analysis on the CFRP laminated composite cantilever plate using orthogonal array is carried out, and the results are compared with those obtained by modal testing.

  • PDF

Optimal Ply Design of Laminated Composite Plate with a Hole Considering Vibration (진동을 고려한 원공복합적층판의 최적적층설계)

  • 홍도관;김동영;최경호;안찬우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.423-429
    • /
    • 2003
  • On this study. we improved the efficiency applying algorithm that is repeatedly using table of orthogonal array in discrete design space and filling a defect of gradient method in continuous design space. we showed optimal ply angle that maximized 1st natural frequency of CFRP laminated composite plate without a hole and with a hole by each aspect ratio. In the case of CFRP laminated composite plate without a hole, we confirmed the reliance and efficiency of algorithm in comparison with the result of optimization achievement repeatedly using statistical table of orthogonal array of experimental design and the BFGS optimal design method.

Investigating the effect of edge crack on the modal properties of composite wing using dynamic stiffness matrix

  • Torabi, Ali Reza;Shams, Shahrokh;Fatehi-Narab, Mahdi
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.543-564
    • /
    • 2021
  • In this study free vibration analysis of a cracked Goland composite wing is investigated. The wing is modelled as a cantilevered beam based on Euler- Bernoulli equations. Also, composite material is modelled based on lamina fiber-reinforced. Edge crack is modelled by additional boundary conditions and local flexibility matrix in crack location, Castigliano's theorem and energy release rate formulation. Governing differential equations are extracted by Hamilton's principle. Using the separation of variables method, general solution in the normalized form for bending and torsion deflection is achieved then expressions for the cross-sectional rotation, the bending moment, the shear force and the torsional moment for the cantilevered beam are obtained. The cracked beam is modelled by separation of beam into two interconnected intact beams. Free vibration analysis of the beam is performed by applying boundary conditions at the fixed end, the free end, continuity conditions in the crack location of the beam and dynamic stiffness matrix determinant. Also, the effects of various parameters such as length and location of crack and fiber angle on natural frequencies and mode shapes are studied. Modal analysis results illustrate that natural frequencies and mode shapes are affected by depth and location of edge crack and coupling parameter.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

Experimental investigation on thermal behavior, sound absorption, and flammability of natural fibre polymer composites

  • Ravi Kumar, B.;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.613-618
    • /
    • 2020
  • Exhausting oil resources and increasing pollution around the world are forcing researchers to look for new, renewable, biodegradable materials to lead sustainable development. The use of fiber reinforced composites based on natural fibres has increasingly begun as prospective materials for various engineering applications in the automotive, rail, construction and aerospace industries. The natural fiber chosen to make the composite material is plant-based fibre, e.g. jute fibre, and hemp fibre. Thermosetting polymer based Epoxy (LY556) was utilized as matrix material and The composites were produced using hand lay-up technique. The fabricated composites were tested for acoustic testing, thermo-gravimetric analysis (TGA) and flammability testing to asses sound absorption, thermal decomposition and fire resistivity of the structures. Hemp fibre composites have shown improved thermal stability over Jute fibre composites. However, the fire resistance characteristics of jute fibre composites are better as compared to hemp fibre composites. The sound absorption coefficient of composites was found to enhance with the increase of frequency.