• Title/Summary/Keyword: Natural DNA

Search Result 1,602, Processing Time 0.025 seconds

Analysis of Expressed Sequence Tags of the Firefly, Pyrocoelia rufa

  • Lee, Kwang-Sik;Bae, Jin-Sik;Goo, Tae-Won;Kim, Sam-Eun;Kim, Jong-Gill;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.2
    • /
    • pp.165-169
    • /
    • 2000
  • We have constructed cDNA library from the larvae whole body of the firefly, Pyrocoelia rufa. Single direct partial sequencing of anonymous cDNA clones was performed to obtain genetic information on the firefly, P. rufa, of which genetic information is currently not available. This expressed sequence tags (EST) analysis of the 54 clones (54%) showed significant homology to the known genes registered in GenBank. Of these clones, twenty-four were related to the known insect genes, but these clones were not matched to previously identified firefly genes. Putative functional categories of these clones showed that the next abundant genes were associated with energy metabolism.

  • PDF

Transformation of the Diatom Phaeodactylum tricornutum with its Endogenous (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Reductase Gene (Phaeodactylum tricornutum의 (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Reductase 유전자의 형질전환)

  • Shin, Bok-Kyu;Jung, Yu-Jin;Kim, Sang-Min;Pan, Cheol-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.273-279
    • /
    • 2015
  • Phaeodactylum tricornutum is a model diatom that its genomic information and biological tools are well established. In this study, a gene encoding (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (PtHDR), a terminal enzyme of the methylerythritol phosphate pathway regulating chlorophyll and carotenoid biosynthesis, was isolated from P. tricornutum. The isolated gene was cloned into pPha-T1 vector containing fcpA promoter to prepare pPha-T1-HDR plasmid. As a positive control, pPha-T1-eGFP plasmid was constructed with egfp gene. Stable nuclear transformation was carried out with these plasmids by particle bombardment method and zeocin resistant colonies of P. tricornutum were selected on f/2 agar plate. In result, transformation efficiency was evaluated according to the amount of plasmid DNA coated with gold particles. Integration of introduced plasmids was confirmed with genomic DNA of each transformant by polymerase chain reaction. The eGFP fluorescence was visible in the cytoplasm, indicating that eGFP was successively expressed in P. tricornutum system. The transcript level of exogenous Pthdr gene was evaluated with the obtained transformants. The results presented here demonstrated that introduction of Pthdr gene into P. tricornutum chromosome succeeded and expression of PtHDR was enhanced under the fcpA promoter.

Taxonomical Classification and Species-specific Detection of Genus Some Phellinus using Phylotype (Phylotype에 의한 수종의 Phellinus속의 분류체계 확립 및 종간구별을 위한 신속동정법 개발)

  • Kim, Cheng-Yun;Lee, Jae-Yun;Kim, Gi-Young;Lee, Ki-Won;Park, Jae-Min;Kim, Mun-Ok;Lee, Tae-Ho;Lee, Jae-Dong
    • The Korean Journal of Mycology
    • /
    • v.31 no.3
    • /
    • pp.121-128
    • /
    • 2003
  • This study was carried out to identify the phylogenetic relationship of Phellinus species and to know its distribution by comparing the DNA sequences of internal transcribed spacer regions(ITS1 and IST2) and 5.8S ribosomal DNA (rDNA) repeat unit. The Phellinus species had their specific sequences in IST1 and 2 regions depending on suedes. The comparison of the ITS sequences of standard strains indicated that the sequences of ITS1 were more variable than those of ITS2. Nine strains of the commercial products of Phellinus species used in this study were identified as P. lintues, P. baumii, P. igniarius, and P. pini. Most of commercial species were P. pini and P. baumii, and P. gilvus was not found. Also, P. linteus was only found in form of mycelial culture rather than fruiting body. Moreover, the species-specific primers were designed based on ITS sequence data. Each species-specific primers were bound in P. lintues(ITSF-PL2R), P. baumii(PB1F-ITS4R), P. igniarius(IF1-IR3), P. pini(PF1-PR3), and P. gilvus(GF2-GR4), respectively. These primer sets would be useful fer the detection of specific-species among unidentified Phellinus species rapidly.

Zebrafish (Danio rerio) Thyroid Hormone Receptor $\alpha$1 Counteracts Retinoic Acid-induced Transcription

  • Rhee, Myubg-Chull;Lee, Woonghee;Chang, Mi-Sook;Lee, Sang-Kyou
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.133-137
    • /
    • 1998
  • The present study aims to characterize a cDNA encoding zebrafish thyroid hormone receptor $\alpha{1}$ $(zTR\alpha{1)}$ in order to investigate its possible role in the early stage of embryonic development. A mobility shift assay showed that $zTR\alpha{1}$ overexpressed in COS7 cells specifically bound to thyroid hormone response element (TRE). In addition, the specific interaction of anti-rat $TR\alpha{1}$ antibodies with $zTR\alpha1$/TRE complexes demonstrated that the cDNA clone encoded zebrafish thyroid hormone receptor $\alpha{1}$. Transient cotransfection assays showed that $zTR\alpha{1}$ repressed the transcription which was induced by retinoic acid (RA), a well-characterized embryonic morphogen. These results suggest that zTRal may be involved in regulating the RA-induced gene transcription during early embryonic development.

  • PDF

Molecular Cloning of ${\alpha}$-Amylase Gene from Schwanniomyces CBS 2863 (Schwanniomyces castellii CBS 2863으로부터 ${\alpha}$-Amylase 유전자 Cloning)

  • Park, Jong-Chun;Bai, Suk;Chun, Bai-CHun
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.34-39
    • /
    • 1994
  • The gene encoding ${\alpha}$-amylase of Schwanniomyces castellii was cloned in Saccharomyces cerevisiae. The 5.0-kilobase insert was shown to direct the synthesis of ${\alpha}$-amylase. Southern blot analysis confirmed that this ${\alpha}$-amylase gene was derived from the genomic DNA of Sch. castellii. Immunoblot analysis showed that ${\alpha}$-amylase production from S. cerevisiae transformant was less than that of donor strain. The ${\alpha}$-amylase secreted from S. cerevisiae transformant was shown to be indistinguishable from that of Sch. castellii on the basis of molecular weight and enzyme properties.

  • PDF

Systematic Relationships of the Urochordates Based on Partial 18S rDNA Sequences

  • Won, Hye-Won;Rho, Boon-Jo;Song, Jun-Im
    • Animal cells and systems
    • /
    • v.3 no.4
    • /
    • pp.359-363
    • /
    • 1999
  • Urochordates, the most primitive group in phylum Chordata, are mostly sessile as adults although some are free living. Presently, the ancestral stock of urochordates as weir as chordates has been the focus of interest and two conflicting hypotheses have been presented. A free swimming ancestor is one and a sessile, filter feeding ancestor is the other. To clarify the phylogenetic relationships within the urochordates, 22 urochordates and five others as outgroups were used. And we applied neighbor joining, maximum likelihood, and maximum parsimony methods to partial 18S rDNA sequences. The inferred phylogeny in all analyses indicates that order Aplousobranchia of class Ascidiacea appears to be the most ancestral group among urochordates. But it is not clear for the low bootstrap value. The remaining two orders of ascidians, Phlebobranchia and Stolidobranchia, form monophyletic groups respectively, which are well supported by high bootstrap values. These two orders are closer to classes of Thaliacea and Appendicularia than to the Aplousobranchia. While class Appendicularia is strongly supported by the monophyletic group, the phylogenetic position of class Thaliacea is unclear in this study.

  • PDF

Antigenotoxic Effect of Paecilomyces tenuipes Cultivated on Soybeans in a Rat Model of 1,2-Dimethylhydrazine-induced Colon Carcinogenesis

  • Park, Eun-Ju;Jeon, Gyeong-Im;Park, Nam-Sook;Jin, Byung-Rae;Lee, Sang-Mong
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.1064-1068
    • /
    • 2007
  • We evaluated the effect of soybean dongchunghacho [SD, cultivated dongchunghacho fungus (Paecilomyces tenuipes) on soybeans] on dimethylhydrazine (DMH)-induced DNA damage and oxidative stress in male F344 rats. The animals were divided into 3 groups and fed a casein-based high-fat, low fiber diet without (DMH group) or with 13%(w/w) of soybean (DMH+S group), or SD (DMH+SD group). One week after beginning the diets, rats were treated weekly with DMH (30 mg/kg, s.c.) for 6 weeks; dietary treatments were continued for the entire experiment and endpoints measured at 9 weeks after the first DMH injection. SD supplementation reduced DMH-induced DNA damage in colon cells and reduced plasma lipid peroxidation. Thus, SD may have therapeutic potential for early-stage colon carcinogenesis.

Chemosystematics and Molecular Phylogeny of a New Bioflocculant-Producing Aspergillus Strain Isolated from Korean Soil

  • Kim, Gi-Young;Ha, Myoung-Gyu;Lee, Tae-Ho;Lee, Jae-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.870-872
    • /
    • 1999
  • The ubiquinone and G+C contents of the bioflocculant-producing fungus, a new Aspergillus strain, were detennined using high-perfonnance liquid chromatography. The internal transcribed spacers 1 and 2 (ITS1 and ITS2), and the 5.8S ribosomal DNA (rDNA) of the strain were amplified and sequenced. The strain contained ubiquinone-l0($H_2$)as a major quinone and the G+C content was 49 mol%. A phylogenetic analysis of the ITS regions indicated that the strain belonged to the genus Aspergillus according to its previously classified morphological characteristics. Based on a sequence homology search, the strain was most closely related to Petromyces muricatus (anamorph, A. muricatus; accession number, AJ005674). The sequence of a new Aspergillus strain in ITS1 and ITS2, and 5.8S rDNA showed 97% homology to P. muricatus. Therefore, the strain is believed to be a new bioflocculant-producing Aspergillus strain.

  • PDF

DNA Vaccines against Infectious Diseases and Cancer

  • Han, Duk-Jae;Weiner, David B.;Sin, Jeong-Im
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • Progress in the development of DNA vaccines and their delivery strategies has been made since their initial concept as a next generation vaccine. Since DNA vaccine includes non-infectious DNA parts of pathogens, it can't cause disease yet it closely mimic the natural process of infection and immune responses. Despite their early promising results of controlling infectious diseases and cancer in small animal models, DNA vaccines failed to display a level of immunogenicity required for combating these diseases in humans, possibly due to their lower protein expression levels. However, increasing evidence has shown that DNA vaccines are clinically well-tolerated and safe. Furthermore, one notable advantage of DNA vaccines includes convenient utilities of plasmid DNAs coding for antigens. For instance, any emerging pathogens could be prevented easily and timely by allowing the simple exchange of antigen-encoding genes. In this review, newly developed DNA vaccine strategies, including electroporation, which has emerged as a potent method for DNA delivery, targeting infectious diseases and cancer will be discussed with a focus on any on-going DNA vaccine trials or progress made pre-clinically and in clinics.

Interaction of Resveratrol and Genistein with Nucleic Acids

  • Usha, Subbiah;Johnson, Irudayam Maria;Malathi, Raghunathan
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.198-205
    • /
    • 2005
  • Resveratrol (RES) and genistein (GEN) are the dietary natural products known to possess chemopreventive property and also the ability to repair DNA damage induced by mutagens/carcinogens. It is believed that the therapeutic activity of these compounds could be primarily due to their interaction with nucleic acids but detailed reports are not available. We here explore the interaction of these drugs with nucleic acids considering DNA and RNA as a potential therapeutic target. The interaction of RES and GEN has been analysed in buffered solution with DNA [saline sodium citrate (SSC)] and RNA [tris ethylene diammine tetra acetic acid (TE)] using UV-absorption and Fourier transform infrared (FTIR) spectroscopy. The UV analysis revealed lesser binding affinity with nucleic acids at lower concentration of RES (P/D = 5.00 and 10.00), while at higher drug concentration (P/D = 0.75, 1.00 and 2.50) hyperchromic effect with shift in the ${\lambda}_{max}$ is noted for DNA and RNA. A major RES-nucleic acids complexes was observed through base pairs and phosphate backbone groups with K = $35.782\;M^{-1}$ and K = $34.25\;M^{-1}$ for DNA-RES and RNA-RES complexes respectively. At various concentrations of GEN (P/D = 0.25, 0.50, 0.75, 1.00 and 2.50) hyperchromicity with shift in the ${\lambda}_{max}$ from 260 $\rightarrow$ 263 om and 260 $\rightarrow$ 270 nm is observed for DNA-GEN and RNA-GEN complexes respectively. The binding constant (from UV analysis) for GEN-nucleic acids complexes could not be obtained due to GEN absorbance overlap with that of nucleic acids at 260 nm. Nevertheless a detailed analysis with regard to the interaction of these drugs (RES/GEN) with DNA and RNA could feasibly be understood by FTIR spectroscopy. The NH band of free DNA and RNA which appeared at $3550-3100\;cm^{-1}$ and $3650-2700\;cm^{-1}$ shifted to $3450-2950\;cm^{-1}$ and $3550-3000\;cm^{-1}$ in DNA-RES and RNA-RES complexes respectively. Similarly shifts corresponding to $3650-3100\;cm^{-1}$ and $3420-3000\;cm^{-1}$ have been observed in DNA-GEN and RNA-GEN complexes respectively. The observed reduction in NH band of free nucleic acids upon complexation of these drugs is an indication of the involvement of the hydroxyl (OH) and imino (NH) group during the interaction of the drugs and nucleic acids (DNA/RNA) through H-bonded formation. The interaction of RES and GEN with bases appears in the order of G $\geq$ T > C > A and A > C $\geq$ T > G. Further interaction of these natural compounds with DNA and RNA is also supported by changes in the vibrational frequency (shift/intensity) in symmetrical and asymmetrical stretching of aromatic rings of drugs in the complex spectra. No appreciable shift is observed in the DNA and RNA marker bands, indicating that the B-DNA form and A-family conformation of RNA are not altered during their interaction with RES and GEN.