DOI QR코드

DOI QR Code

Transformation of the Diatom Phaeodactylum tricornutum with its Endogenous (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Reductase Gene

Phaeodactylum tricornutum의 (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Reductase 유전자의 형질전환

  • Shin, Bok-Kyu (Laboratory of Biomodulation, Natural Products Research Center, KIST Gangneung Institute of Natural Products) ;
  • Jung, Yu-Jin (Laboratory of Biomodulation, Natural Products Research Center, KIST Gangneung Institute of Natural Products) ;
  • Kim, Sang-Min (Laboratory of Biomodulation, Natural Products Research Center, KIST Gangneung Institute of Natural Products) ;
  • Pan, Cheol-Ho (Laboratory of Biomodulation, Natural Products Research Center, KIST Gangneung Institute of Natural Products)
  • Received : 2015.07.22
  • Accepted : 2015.07.28
  • Published : 2015.09.30

Abstract

Phaeodactylum tricornutum is a model diatom that its genomic information and biological tools are well established. In this study, a gene encoding (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (PtHDR), a terminal enzyme of the methylerythritol phosphate pathway regulating chlorophyll and carotenoid biosynthesis, was isolated from P. tricornutum. The isolated gene was cloned into pPha-T1 vector containing fcpA promoter to prepare pPha-T1-HDR plasmid. As a positive control, pPha-T1-eGFP plasmid was constructed with egfp gene. Stable nuclear transformation was carried out with these plasmids by particle bombardment method and zeocin resistant colonies of P. tricornutum were selected on f/2 agar plate. In result, transformation efficiency was evaluated according to the amount of plasmid DNA coated with gold particles. Integration of introduced plasmids was confirmed with genomic DNA of each transformant by polymerase chain reaction. The eGFP fluorescence was visible in the cytoplasm, indicating that eGFP was successively expressed in P. tricornutum system. The transcript level of exogenous Pthdr gene was evaluated with the obtained transformants. The results presented here demonstrated that introduction of Pthdr gene into P. tricornutum chromosome succeeded and expression of PtHDR was enhanced under the fcpA promoter.

해양 미세조류인 Phaeodactylum tricornutum은 게놈 염기서열이 완전히 밝혀진 규조류로서, 형질전환 방법이 개발되어 있고, 여러 가지 분자생물학적 연구 기술이 개발되어 규조류 연구에서 모델 종으로 여겨지고 있다. 본 연구의 목적은 methylerythritol phosphate (MEP) 대사경로의 마지막 효소인 (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR)를 코딩하는 P. tricornutum의 Pthdr 유전자를 P. tricornutum에 도입하여 형질전환체를 확보하는 것이다. 유전자 도입 방법은 gold microcarrier를 사용한 bombardment 방법을 사용하였고, 형질전환 유무 및 목적 유전자의 전사체 확인에는 각각 genomic DNA-PCR 및 cDNA-PCR 방법을 사용하였다. 양성대조군으로 egfp 유전자를 P. tricornutum에 도입하여 최종적으로 eGFP 단백질이 발현되는 것을 형광 공초점 현미경을 통해 확인하였다. 이를 바탕으로, 확보된 Pthdr 형질전환체에서도 도입한 Pthdr 유전자로부터 발현된 PtHDR 효소도 잘 발현될 것으로 추측할 수 있었다. 이렇게 준비된 Pthdr 형질전환체는 추후 연구를 통해, P. tricornum의 유용물질인 카로티노이드의 생합성 과정 연구 및 고부가가치 카로티노이드 과발현 균주 개발 등에 유용한 정보를 제공할 것으로 기대된다.

Keywords

References

  1. Altincicek B, Duin EC, Reichenberg A, Hedderich R, Kollas AK, Hintz M et al. (2002) LytB protein catalyzes the terminal step of the 2-C-methyl-Derythritol-4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett 532, 437-40. https://doi.org/10.1016/S0014-5793(02)03726-2
  2. Apt KE, Grossman A, and Kroth-Pancic P (1996) Stable nuclear transformation of the diatomPhaeodactylum tricornutum. Mol Gene Genet 252, 572-9.
  3. Borowitzka MA and Volcani BE (1978) The Polymorphic Diatom Phaeodactylum tricornutum: Ultrastructure of Its Morphotypes1, 2. J Phycol 14, 10-21. https://doi.org/10.1111/j.1529-8817.1978.tb00625.x
  4. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A et al. (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239-44. https://doi.org/10.1038/nature07410
  5. Cerutti H, Ma X, Msanne J, and Repas T (2011) RNA-mediated silencing in algae: biological roles and tools for analysis of gene function. Eukaryot Cell 10, 1164-72. https://doi.org/10.1128/EC.05106-11
  6. De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, and Falciatore A (2009) Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 37, e96. https://doi.org/10.1093/nar/gkp448
  7. Falciatore A, Casotti R, Leblanc C, Abrescia C, and Bowler C (1999) Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol 1, 239-51. https://doi.org/10.1007/PL00011773
  8. Falkowski PG, Barber RT, and Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200-6. https://doi.org/10.1126/science.281.5374.200
  9. Field CB, Behrenfeld MJ, Randerson JT, and Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237-40. https://doi.org/10.1126/science.281.5374.237
  10. Francius G, Tesson B, Dague E, MartinJézéquel V, and Dufrêne YF (2008) Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes. Environ Microbiol 10, 1344-56. https://doi.org/10.1111/j.1462-2920.2007.01551.x
  11. Grawert T, Kaiser J, Zepeck F, Laupitz R, Hecht S, Amslinger S et al. (2004) IspH protein of Escherichia coli: studies on iron-sulfur cluster implementation and catalysis. J Am Chem Soc 126, 12847-55. https://doi.org/10.1021/ja0471727
  12. Grawert T, Rohdich F, Span I, Bacher A, Eisenreich W, Eppinger J et al. (2009) Structure of active IspH enzyme from Escherichia coli provides mechanistic insights into substrate reduction. Angew Chem Int Ed Engl 48, 5756-9. https://doi.org/10.1002/anie.200900548
  13. Grawert T, Span I, Eisenreich W, Rohdich F, Eppinger J, Bacher A et al. (2010) Probing the reaction mechanism of IspH protein by x-ray structure analysis. Proc Natl Acad Sci U S A 107, 1077-81. https://doi.org/10.1073/pnas.0913045107
  14. Guillard RL (1975) Culture of Phytoplankton for Feeding Marine Invertebrates In Culture of Marine Invertebrate Animals, Smith W and Chanley M (1 st ed.), pp. 29-60, Springer US., USA.
  15. Guillard RRL and Ryther JH (1962) Studies of Marine Planktonic Diatoms: I. cyclotella Nana Hustent, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8, 229-39. https://doi.org/10.1139/m62-029
  16. He L, Han X, and Yu Z (2014) A rare Phaeodactylum tricornutum cruciform morphotype: culture conditions, transformation and unique fatty acid characteristics. PLoS One 9, e93922. https://doi.org/10.1371/journal.pone.0093922
  17. Kang MK, Nargis S, Kim SM, and Kim SU (2013) Distinct expression patterns of two Ginkgo biloba 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase/isopentenyl diphospahte synthase (HDR/IDS) promoters in Arabidopsis model. Plant Physiol Biochem 62, 47-53. https://doi.org/10.1016/j.plaphy.2012.10.011
  18. Kim SM, Kuzuyama T, Kobayashi A, Sando T, Chang YJ, and Kim SU (2008) 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda. Planta 227, 287-98.
  19. Kroth P (2007) Molecular biology and the biotechnological potential of diatoms In Transgenic microalgae as green cell factories, Leon R, Galvan A, and Fernandez E (1 st ed.), pp. 23-33, Springer US., USA.
  20. Lewin JC, Lewin R, and Philpott D (1958) Observations on Phaeodactylum tricornutum. J Gen Microbiol 18, 418-26. https://doi.org/10.1099/00221287-18-2-418
  21. Lohr M, Schwender J, and Polle JE (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185, 9-22.
  22. Maeda H, Hosokawa M, Sashima T, Funayama K, and Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332, 392-7. https://doi.org/10.1016/j.bbrc.2005.05.002
  23. Maheswari U, Mock T, Armbrust EV, and Bowler C (2009) Update of the Diatom EST Database: a new tool for digital transcriptomics. Nucleic Acids Res 37, D1001-D5. https://doi.org/10.1093/nar/gkn905
  24. Maheswari U, Montsant A, Goll J, Krishnasamy S, Rajyashri KR, Patell VM et al. (2005) The Diatom EST Database. Nucleic Acids Res 33, D344-D7.
  25. Martino AD, Meichenin A, Shi J, Pan K, and Bowler C (2007) Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions1. J Phycol 43, 992-1009. https://doi.org/10.1111/j.1529-8817.2007.00384.x
  26. Matsumoto M, Hosokawa M, Matsukawa N, Hagio M, Shinoki A, Nishimukai M et al. (2010) Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated rats. European journal of nutrition 49, 243-9. https://doi.org/10.1007/s00394-009-0078-y
  27. Niu Y, Yang Z, Zhang M, Zhu C, Yang W, Liu J et al. (2012) Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker. Biotechniques, 1-3.
  28. Nomura T, Kikuchi M, Kubodera A, and Kawakami Y (1997) Protondonative antioxidant activity of fucoxanthin with 1, 1diphenyl2picrylhydrazyl (DPPH). IUBMB Life 42, 361-70. https://doi.org/10.1080/15216549700202761
  29. Owens TG (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum II. Distribution of excitation energy between the photosystems. Plant Physiol 80, 739-46. https://doi.org/10.1104/pp.80.3.739
  30. Patil V (2005) Microalgae as a source of polyunsaturated fatty acids for aquaculture. Curr Topics Plant Biol 6, 57-65.
  31. Rohdich F, Hecht S, Gartner K, Adam P, Krieger C, Amslinger S et al. (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci U S A 99, 1158-63. https://doi.org/10.1073/pnas.032658999
  32. Round FE, Crawford RM, and Mann DG (1990) In The diatoms: biology & morphology of the genera, (2nd ed.) Cambridge University Press, UK.
  33. Shin B-K, Ahn J-H, and Han J (2015) N-Terminal Region of GbIspH1, Ginkgo biloba IspH Type 1, May Be Involved in the pH-Dependent Regulation of Enzyme Activity. Bioinorganic chemistry and applications 2015, 1-8.
  34. Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A et al. (2007) Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406, 23-35. https://doi.org/10.1016/j.gene.2007.05.022
  35. Span I, Grawert T, Bacher A, Eisenreich W, and Groll M (2012) Crystal structures of mutant IspH proteins reveal a rotation of the substrate's hydroxymethyl group during catalysis. J Mol Biol 416, 1-9. https://doi.org/10.1016/j.jmb.2011.11.033
  36. Talero E, Avila-Roman J, and Motilva V (2012) Chemoprevention with phytonutrients and microalgae products in chronic inflammation and colon cancer. Curr Pharm Des 18, 3939-65. https://doi.org/10.2174/138161212802083725
  37. Tanaka Y, Nakatsuma D, Harada H, Ishida M, and Matsuda Y (2005) Localization of soluble ${\beta}$-carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Sorting to the chloroplast and cluster formation on the girdle lamellae. Plant Physiol 138, 207-17. https://doi.org/10.1104/pp.104.058982
  38. Werner D (1977) In The biology of diatoms. Univ of California Press, USA.
  39. Wolff M, Seemann M, Tse Sum Bui B, Frapart Y, Tritsch D, Garcia Estrabot A et al. (2003) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB/IspH) from Escherichia coli is a [4Fe-4S] protein. FEBS Lett 541, 115-20. https://doi.org/10.1016/S0014-5793(03)00317-X
  40. Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, and Apt KE (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36, 379-86.