• 제목/요약/키워드: National Control Point

검색결과 1,789건 처리시간 0.03초

양단 경계 조건이 있는 리카티 식을 가진 선형 레규레이터 (Linear Quadratic Regulators with Two-point Boundary Riccati Equations)

  • 권욱현
    • 대한전자공학회논문지
    • /
    • 제16권5호
    • /
    • pp.18-26
    • /
    • 1979
  • 본 논문에서는 algebraic matrix Lyapunov equations과 a1gebraic matrix Riccati equations에 관하여 잘 알려져 있는 중요한 결과를 확장한다. 본 연구는 Matrix 미분 방정식에서 양단 경계조건이 존재하는 문제를 다루며 여기에서 얻어지는 결과는 기존하고 있는 결과를 포함하게 된다. 특히 선형 시스템이 periodic feedback gain control로 안정화되는 필요충분조건을 구하며, two-point boundary Riccati equations의 해를 쉽게 구하는 반복 계산방법을 제시한다. 또한 interalwise reeceding horizon을 이용한 새로운 periodic feedback gain control이 시스템을 안전화시켜줌을 보여준다.

  • PDF

지표면의 시공간적 변화를 고려한 비점오염원 저감 저류지 최적용량산정 (Optimal Volume Estimation for Non-point Source Control Retention Considering Spatio-Temporal Variation of Land Surface)

  • 최대규;김진관;이재관;김상단
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.9-18
    • /
    • 2011
  • In this study the optimal volume for non-point source control retention is estimated considering spatio-temporal variation of land surface. The 3-parameter mixed exponential probability density function is used to represent the statistical properties of rainfall events, and NRCS-CN method is applied as rainfall-runoff transformation. The catchment drainage area is divided into individual $30m{\times}30m$ cells, and runoff curve number is estimated at each cell. Using the derived probability density function theory, the stormwater probability density function at each cell is derived from the rainfall probability density function and NRCS-CN rainfall-runoff transformation. Considering the antecedent soil moisture condition at each cell and the spatial variation of CN value at the whole catchment drainage area, the ensemble stormwater capture curve is established to estimate the optimal volume for an non-point source control retention. The comparison between spatio-temporally varied land surface and constant land surface is presented as a case study for a urban drainage area.

Maximum Power Point Tracking Controller Connecting PV System to Grid

  • Ahmed G. Abo-Khalil;Lee Dong-Choon;Choi Jong-Woo;Kim Heung-Geun
    • Journal of Power Electronics
    • /
    • 제6권3호
    • /
    • pp.226-234
    • /
    • 2006
  • Photovoltaic (PV) generators have nonlinear V-I characteristics and maximum power points which vary with illumination level and temperature. Using a maximum power point tracker (MPPT) with an intermediate converter can increase the system efficiency by matching the PV systems to the load. This paper presents a maximum power point tracker based on fuzzy logic and a control scheme for a single-phase inverter connected to the utility grid. The fuzzy logic controller (FLC) provides an adaptive nature for system performance. Also the FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve the control system. A single-phase AC-DC inverter is used to connect the PV system to the grid utility and local loads. While a control scheme is implemented to inject the PV output power to the utility grid at unity power factor and reduced harmonic level. The simulation results have shown the effectiveness of the proposed scheme.

CAN 네트워크를 이용한 자동화 크레인 시스템의 구현 (Implementation of Automated Transfer Crane System using CAN Network)

  • 김만호;하경남;이경창;홍금식;이석
    • 한국항해항만학회지
    • /
    • 제29권6호
    • /
    • pp.555-560
    • /
    • 2005
  • 전체 시스템을 최적상태로 유지하기 위한 정보공유의 필연성 등으로 대다수의 제어 시스템이 디지털 제어 시스템으로 대체되고 있다. 이러한 디지털 제어 시스템이 원활하게 운영되기 위해서는 전통적인 점대점 연결방식이 아닌 네트워크를 기반으로 한 시스템이 필수적이며, 이러한 산업용 네트워크를 지능형 항만 물류 시스템에 적용하기 위할 연구가 최근 다양하게 이루어지고 있다. 본 논문에서는 NMEA 2000의 기반이 되는 CAN 프로토콜을 이용한 크레인 시스템의 타당성을 검증하기 위하여 단순화된 네트워크 기반 제어 시스템을 구현하였다.

자기장 지도를 이용한 위치 추정 (Position Estimation Using Magnetic Field Map)

  • 김한솔;문우성;서우진;백광렬
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.290-298
    • /
    • 2013
  • Geomagnetic is refracted by building's wall and pillar. Therefore refracted geomagnetic is able to be used as feature point. In a specific space, a mobile device that is equipped with magnetic sensor array measures 3-axis magnetic field for each point. Magnetic field map is acquired by collecting the every sample point in the magnetic field. The measured magnetic field must be calibrated, because each magnetic sensor has a distortion. For this reason, sensor distortion model and sensor calibration method are proposed in this paper. Magnetic field that is measured by mobile device matches magnetic field map. Result of the matching is used for position estimation. This paper implements hardware system for position estimation method using magnetic field map.

실제 일사량 조건에서의 최적 MPPT 제어주기 (Optimum MPPT Control Period for Actual Insolation Condition)

  • 류단비;김용중;김효성
    • 전력전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.99-104
    • /
    • 2019
  • Solar power generation systems require maximum power point tracking (MPPT) control to acquire maximum power using inefficient and high-cost PV modules. Most conventional MPPT algorithms are based on the slope-tracking concept. The perturb and observe (P&O) algorithm is a typical slope-tracking method. The two factors that determine the MPPT performance of P&O algorithm are the MPPT control period and the magnitude of the perturbation voltage. The MPPT controller quickly moves to the new maximum power point at insolation change when the perturbation voltage is set to large, and the error of output power will be huge in the steady state even when insolation is not changing. The dynamics of the MPPT controller can be accelerated even though the perturbation voltage is set to small when the MPPT control period is set to short. However, too short MPPT control period does not improve MPPT performance but consumes the MPPT controller resources. Therefore, analyzing the performance of the MPPT controller is necessary for actual insolation conditions in real weather environment to determine the optimum MPPT control period and the magnitude of the perturbation voltage. This study proposes an optimum MPPT control period that maximizes MPPT efficiency by measuring and analyzing actual insolation profiles in typical clear and cloudy weather in central Korea.

비선형 내점법을 이용한 전력계통 평형점 최적화 (EOPT) (Power System Equilibrium Optimization (EOPT) with a Nonlinear Interior Point Method)

  • 송화창;호세 로델 도사노
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.8-9
    • /
    • 2006
  • This paper presents a new methodology to calculate an optimal solution of equilibrium to power system differential algebraic equations. It employs a nonlinear interior point method for solving the optimization formulation, which includes dynamic equations representing two-axis synchronous generator models with AVR and speed governing control, algebraic equations, and steady-state nonlinear loads. Equilibrium optimization (EOPT) is useful for diverse purposes in power system analysis and control with consideration of the system frequency constraint.

  • PDF

A change point estimator in monitoring the parameters of a multivariate IMA(1, 1) model

  • Sohn, Sun-Yoel;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.525-533
    • /
    • 2015
  • Modern production process is a very complex structure combined observations which are correlated with several factors. When the error signal occurs in the process, it is very difficult to know the root causes of an out-of-control signal because of insufficient information. However, if we know the time of the change, the system can be controlled more easily. To know it, we derive a maximum likelihood estimator (MLE) of the change point in a process when observations are from a multivariate IMA(1,1) process by monitoring residual vectors of the model. In this paper, numerical results show that the MLE of change point is effective in detecting changes in a process.

WQV 기반 비점오염저감시설의 강우유출수 처리비 경험공식의 개선 (The Improvement on the Empirical Formula of Stormwater Captured Ratio for Water Quality Volume Based Non-Point Pollutants Water Quality Control Basins)

  • 최대규;박무종;박배경;김상단
    • 한국물환경학회지
    • /
    • 제30권1호
    • /
    • pp.87-94
    • /
    • 2014
  • According to the technical guideline of water pollutant load management, the rainfall captured ratio which can be estimated by the empirical formula is an important element to estimate reduction loads of non-point pollutants water quality control basin. In this study, the rainfall captured ratio is altered to stormwater captured ratio considering its meaning in the technical guideline of water pollutant load management, and the new empircal formula of stormwater captured ratio is suggested. In order to do this, we calculate stormwater captured ratio by using the hourly rainfall data of seven urban weather stations (Busan, Daegu, Daejeon, Gangreung, Seoul, Gwangju, and Jeju) for 43 years. The regression coefficients of the existed empirical formula cannot reflect the catchment properties at all, because they are fixed values regardless of regions. However the empirical formula of stormwater captured ratio has flexible regression coefficients by runoff coefficient(C), so it is allowed to consider the characteristics of runoff in catchment. It is expected that reduction loads of storage based water quality control basin can be more reasonably estimated than before.

Two-Wheeled Welding Mobile Robot for Tracking a Smooth Curved Welding Path Using Adaptive Sliding-Mode Control Technique

  • Dung, Ngo Manh;Duy, Vo Hoang;Phuong, Nguyen Thanh;Kim, Sang-Bong;Oh, Myung-Suck
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권3호
    • /
    • pp.283-294
    • /
    • 2007
  • In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding surface vector including new boundizing function is proposed and applied to a two-wheeled welding mobile robot (WMR). This controller makes the welding point of WMR achieve tracking a reference point which is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To design the controller, the tracking error vector is defined, and then the sliding surface vector including new boundizing function and the adaptation laws are chosen to guarantee that the error vector converges to zero asymptotically. The stability of the dynamic system is shown through the Lyapunov method. In addition, a simple way of measuring the errors by potentiometers is introduced. The simulations and experimental results are shown to prove the effectiveness of the proposed controller.