• Title/Summary/Keyword: Nash-Sutcliffe efficiency coefficient

Search Result 123, Processing Time 0.02 seconds

Historical changing of flow characteristics over Asian river basins

  • Ha, Doan Thi Thu;Kim, Tae-Son;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.118-118
    • /
    • 2020
  • This study investigates the change of flow characteristics over 10 Asian river basins in the past 30 years (1976-2005). The variation is estimated from The Soil and Water Assessment Tool (SWAT) model outputs based on reanalysis data which was bias-corrected for Asian monsoon reagion. The model was firstly calibrated and validated using observed data for daily streamflow. Four statistical criteria were applied to evaluate the model performance, including Coefficient of determination (R2), Nash - Sutcliffe model efficiency coeffi cient (NSE), Root mean square error-observations standard deviation ratio (RSR), and Percentage Bias (PBIAS). Then parameters of the model were applied for the historical period 1976-2005. The estimates show a temporal non-considerable increasing rate of daily streamflow in most of the basins over the past 30 years. The difference of monthly discharge becomes more significant during the months in the wet season (June to September) in all basins. The seasonal runoff shows significant difference in Summer and Autumn, when the rainfall intensity is higher. The line showing averaged runoff/rainfall ratio in all basins is sharp, presenting high variation of seasonal runoff/rainfall ratio from season to season.

  • PDF

Comparison of Different Multiple Linear Regression Models for Real-time Flood Stage Forecasting (실시간 수위 예측을 위한 다중선형회귀 모형의 비교)

  • Choi, Seung Yong;Han, Kun Yeun;Kim, Byung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.9-20
    • /
    • 2012
  • Recently to overcome limitations of conceptual, hydrological and physics based models for flood stage forecasting, multiple linear regression model as one of data-driven models have been widely adopted for forecasting flood streamflow(stage). The objectives of this study are to compare performance of different multiple linear regression models according to regression coefficient estimation methods and determine most effective multiple linear regression flood stage forecasting models. To do this, the time scale was determined through the autocorrelation analysis of input data and different flood stage forecasting models developed using regression coefficient estimation methods such as LS(least square), WLS(weighted least square), SPW(stepwise) was applied to flood events in Jungrang stream. To evaluate performance of established models, fours statistical indices were used, namely; Root mean square error(RMSE), Nash Sutcliffe efficiency coefficient (NSEC), mean absolute error (MAE), adjusted coefficient of determination($R^{*2}$). The results show that the flood stage forecasting model using SPW(stepwise) parameter estimation can carry out the river flood stage prediction better in comparison with others, and the flood stage forecasting model using LS(least square) parameter estimation is also found to be slightly better than the flood stage forecasting model using WLS(weighted least square) parameter estimation.

Calculation of Soil Moisture and Evaporation on the Korean Peninsula using NASA LIS(Land Information System) (NASA LIS(Land Information System)을 이용한 한반도의 토양수분·증발산량 산출)

  • PARK, Gwang-Ha;YU, Wan-Sik;HWANG, Eui-Ho;JUNG, Kwan-Sue
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.83-100
    • /
    • 2020
  • This study evaluated the accuracy of soil moisture and evapotranspiration by calculating the hydrological parameters in Korean peninsula using Land Information System(LIS) developed by US NASA. We used Noah-MP surface model to calculate hydrological parameters, and used MERRA2(Modern-Era Retrospective analysis for Research and Applications, Version 2) for hydrological forcing data. And, International Geosphere-Biosphere Program(IGBP) and University of Maryland(UMD) land cover maps were applied to compare the output accuracy, and Automated Synoptic Observing System(ASOS) of KMA was used as ground observation data. In order to evaluate the accuracy of the output data, the correlation coefficient(CC), BIAS, and efficiency factor (NSE, Nash-Sutcliffe Efficiency) were analyzed with soil moisture and evapotranspiration by ASOS ground observation data. As a result, the correlation coefficient of soil moisture using IGBP was 0.56 on average, and evapotranspiration was about 0.71. On the other hand, soil moisture using UMD was 0.68 on average and evapotranspiration was about 0.72, and the correlation coefficient by UMD was evaluated as high accuracy compared to the results by using IGBP. The correlation coefficient of soil moisture was an average of 0.68 and evapotranspiration was an average of 0.72 when MERRA2 was used as hydrological forcing data. On the other hand, the soil moisture applied with ASOS was an average of 0.66, and evapotranspiration was an average of 0.72. It is judged that the ASOS point data was reanalyzed as 0.65°× 0.5°grids, which is the same spatial resolution with MERRA2, resulting in differences in accuracy depending on the region.

Evaluation of Accuracy Improvement of SWAT Model for the Yongdam-Dam Watershed based on Multi-Point Hydrological Observations (용담댐유역의 다지점 유량관측 자료 이용에 따른 SWAT 모형의 정확도 향상성 평가)

  • SHIN, Hyung-Jin;PARK, Min-Ji;LEE, Ji-Won;HWANG, Eui-Ho;KANG, Seok-Man;CHAE, Hyo-Sok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.104-118
    • /
    • 2018
  • This study is to evaluate the accuracy improvement of the model using SWAT(Soil and Water Assessment Tool) model and multi - point hydrological observation data. The watershed is located in the Yongdam Dam($930.4km^2$), the Donghyang($165.5km^2$), the Chuncheon($290.9km^2$), the Juchun($57.8km^2$) and the Seokjeong($80.5km^2$). The watershed covers 70.0 % forest. In order to improve the accuracy of the model, precipitation data were used from two weather stations(Jangsu, Geumsan) and 16 AWS stations daily precipitation data(2003~2011) managed by KMA, MLIT, and K-water. Based on the reliable data of the Yongam test basin in 2003~2011, the runoff of single point (Yongdam dam) and multi-point (Donghyang, Chuncheon, Jucheon, Seokjeong). Simulation results show that the $R^2$ of the single subwatershed (Donghyang, Chuncheon, Jucheon, Seokjeong) is single point(0.84) and multipoint(0.88). For model efficiency coefficient of Nash-Sutcliffe at single point(0.45) and multipoint(0.70).

Assessment of Climate Change Impact on Imha-Dam Watershed Hydrologic Cycle under RCP Scenarios (RCP 기후변화 시나리오에 따른 임하댐 유역의 미래 수문순환 전망)

  • Jang, Sun-Sook;Ahn, So-Ra;Joh, Hyung-Kyung;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.156-169
    • /
    • 2015
  • This study was to evaluate the RCP climate change impact on hydrological components in the Imha-Dam watershed using SWAT(Soil and Water Assessment Tool) Model. The model was calibrated for six year(2002~2007) and validated for six year(2008~2013) using daily observed streamflow data at three watershed stations. The overall simulation results for the total released volume at this point appear reasonable by showing that coefficient of determination($R^2$) were 0.70~0.85 and Nash-Sutcliffe model efficiency(NSE) were 0.67-0.82 for streamflow, respectively. For future hydrologic evaluation, the HadGEM3-RA climate data by scenarios of Representative Concentration Pathway(RCP) 4.5 and 8.5 of the Korea Meteorological Administration were adopted. The biased future data were corrected using 34 years(1980~2013, baseline period) of weather data. Precipitation and temperature showed increase of 10.8% and 4.9%, respectively based on the baseline data. The impacts of future climate change on the evapotranspiration, soil moisture, surface runoff, lateral flow, return flow and streamflow showed changes of +11.2%, +1.9%, +10.0%, +12.1%, +18.2%, and +11.2%, respectively.

Evaluation of SWAT Model Applicability for Runoff Estimation in Nam River Dam Watershed (남강댐 상류 소유역의 유출량 추정을 위한 SWAT 모형의 적용성 평가)

  • Kim, Dong-Hyeon;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.9-19
    • /
    • 2016
  • The objective of this study was to evaluate the applicability of SWAT (Soil and Water Assessment Tool) model for runoff estimation in the Nam river dam watershed. Input data for the SWAT model were established using spatial data (land use, soil, digital elevation map) and weather data. The SWAT model was calibrated and validated using observed runoff data from 2003 to 2014 for three stations (Sancheong, Shinan, Changchon) within the study watershed. The $R^2$ (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. Parameters for runoff calibration were selected based on user's manual and references and trial and error method was applied for parameter calibration. Calibration results showed that annual mean runoff were within ${\pm}5%$ error compared to observed. $R^2$ were ranged 0.64 ~ 0.75, RMSE were 2.51 ~ 4.97 mm/day, NSE were 0.48 ~ 0.65, and RMAE were 0.34 ~ 0.63 mm/day for daily runoff, respectively. The runoff comparison for three stations showed that annual runoff was higher in Changchon especially summer and winter seasons. The flow exceedance graph showed that Sancheong and Shinan stations were similar while Changchon was higher in entire fraction.

Assessing Climate Change Impacts on Hydrology and Water Quality using SWAT Model in the Mankyung Watershed (SWAT 모형을 이용한 기후변화에 따른 만경강 유역에서의 수문 및 수질 영향 평가)

  • Kim, Dong-Hyeon;Hwang, Syewoon;Jang, Taeil;So, Hyunchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.83-96
    • /
    • 2018
  • The objective of this study was to estimate the climate change impact on water quantity and quality to Saemanguem watershed using SWAT (Soil and water assessment tool) model. The SWAT model was calibrated and validated using observed data from 2008 to 2017 for the study watershed. The $R^2$ (Determination coefficient), RMSE (Root mean square error), and NSE (Nash-sutcliffe efficiency coefficient) were used to evaluate the model performance. RCP scenario data were produced from 10 GCM (General circulation model) and all relevant grid data including the major observation points (Gusan, Jeonju, Buan, Jeongeup) were extracted. The systematic error evaluation of the GCM model outputs was performed as well. They showed various variations based on analysis of future climate change effects. In future periods, the MIROC5 model showed the maximum values and the CMCC-CM model presented the minimum values in the climate data. Increasing rainfall amount was from 180mm to 250mm and increasing temperature value ranged from 1.7 to $5.9^{\circ}C$, respectively, compared with the baseline (2006~2017) in 10 GCM model outputs. The future 2030s and 2070s runoff showed increasing rate of 16~29% under future climate data. The future rate of change for T-N (Total nitrogen) and T-P (Total phosphorus) loads presented from -26 to +0.13% and from +5 to 47%, respectively. The hydrologic cycle and water quality from the Saemanguem headwater were very sensitive to projected climate change scenarios so that GCM model should be carefully selected for the purpose of use and the tendency analysis of GCM model are needed if necessary.

Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast (단기 강우예측 정보를 이용한 도시하천 유출모의 적용)

  • Yhang, Yoo Bin;Lim, Chang Mook;Yoon, Sun Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

Evaluation of HSPF Model Applicability for Runoff Estimation of 3 Sub-watershed in Namgang Dam Watershed (남강댐 상류 3개 소유역의 유출량 추정을 위한 HSPF 모형의 적용성 평가)

  • Kim, So Rae;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.328-338
    • /
    • 2018
  • The objective of this study was to evaluate the applicability of a HSPF (Hydrological Simulation Program-Fortran) model for runoff estimation in the Namgang dam watershed. Spatial data, such as watershed, stream, land use, and a digital elevation map, were used as input for the HSPF model, which was calibrated and validated using observed runoff data from 2004 to 2015 for three stations (Sancheong, Shinan, Changchon) in the study watershed. Parameters for runoff calibration were selected based on the user's manual and references, and parameter calibration was done by trial and error. The $R^2$ (determination coefficient), RMSE (root-mean-square error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (relative mean absolute error) were used to evaluate the model's performance. Calibration and validation results showed that annual mean runoff was within a ${\pm}5%$ error in Sancheong and Shinan, whereas there was a14% error in Changchon. The model performance criteria for calibration and validation showed that $R^2$ ranged from 0.80 to 0.92, RMSE was 2.33 to 2.39 mm/day, NSE was 0.71 to 0.85, and RMAE was 0.37 to 0.57 mm/day for daily runoff. Visual inspection showed that the simulated daily flow, monthly flow, and flow exceedance graph agreed well with observations for the Sancheong and Shinan stations, whereas the simulated flow was higher than observed at the Changchon station.

Analysis of Livestock Nonpoint Source Pollutant Load Ratio for Each Sub-watershed in Sancheong Watershed using HSPF Model (HSPF 모형을 이용한 산청 유역의 소유역별 축산비점오염부하량 비중 분석)

  • Kim, So Rae;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.39-50
    • /
    • 2020
  • The objective of this study was to assess the livestock nonpoint source pollutant impact on water quality in Namgang dam watershed using the HSPF (Hydrological Simulation Program-Fortran) model. The input data for the HSPF model was established using the landcover, digital elevation, and watershed and river maps. In order to apply the pollutant load to the HSPF model, the delivery load of the livestock nonpoint source in the Namgang dam watershed was calculated and used as a point pollutant input data for the HSPF model. The hydrologic and water quality parameters of HSPF model were calibrated and validated using the observed runoff data from 2007 to 2015 at Sancheong station. The R2 (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. The simulation results for annual mean runoff showed that R2 ranged 0.79~0.81, RMSE 1.91~2.73 mm/day, NSE 0.7~0.71 and RMAE 0.37~0.49 mm/day for daily runoff. The simulation results for annual mean BOD for RMSE ranged 0.99~1.13 mg/L and RMAE 0.49~0.55 mg/L, annual mean TN for RMSE ranged 1.65~1.72 mg/L and RMAE 0.55 mg/L, and annual mean TP for RMSE ranged 0.043~0.055 mg/L and RMAE 0.552~0.570 mg/L. As a result of livestock nonpoint pollutant loading simulation for each sub-watersehd using the HSPF model, the BOD ranged 16.6~163 kg/day, TN ranged 27.5~337 kg/day, TP ranged 1.22~14.1 kg/day.