• Title/Summary/Keyword: Nash-Sutcliffe efficiency coefficient

Search Result 123, Processing Time 0.018 seconds

Evaluation of stream flow and water quality changes of Yeongsan river basin by inter-basin water transfer using SWAT (SWAT을 이용한 유역간 물이동량에 따른 영산강유역의 하천 유량 및 수질 변동 분석)

  • Kim, Yong Won;Lee, Ji Wan;Woo, So Young;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1081-1095
    • /
    • 2020
  • This study is to evaluate stream flow and water quality changes of Yeongsan river basin (3,371.4 km2) by inter-basin water transfer (IBWT) from Juam dam of Seomjin river basin using SWAT (Soil and Water Assessment Tool). The SWAT was established using inlet function for IBWT between donor and receiving basins. The SWAT was calibrated and validated with 14 years (2005 ~ 2018) data of 1 stream (MR) and 2 multi-functional weir (SCW, JSW) water level gauging stations, and 3 water quality stations (GJ2, NJ, and HP) including data of IBWT and effluent from wastewater treatment plants of Yeongsan river basin. For streamflow and weir inflows (MR, SCW, and JSW), the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE), and percent bias (PBIAS) were 0.69 ~ 0.81, 0.61 ~ 0.70, 1.34 ~ 2.60 mm/day, and -8.3% ~ +7.6% respectively. In case of water quality, the R2 of SS, T-N, and T-P were 0.69 ~ 0.81, 0.61 ~ 0.70, and 0.54 ~ 0.63 respectively. The Yeongsan river basin average streamflow was 12.0 m3/sec and the average SS, T-N, and T-P were 110.5 mg/L, 4.4 mg/L, 0.18 mg/L respectively. Under the 130% scenario of IBWT amount, the streamflow, SS increased to 12.94 m3/sec (+7.8%), 111.26 mg/L (+0.7%) and the T-N, T-P decreased to 4.17 mg/L (-5.2%), 0.165 mg/L (-8.3%) respectively. Under the 70% scenario of IBWT amount, the streamflow, SS decreased to 11.07 m3/sec (-7.8%), 109.74 mg/L (-0.7%) and the T-N, T-P increased to 4.68 mg/L (+6.4%), 0.199 mg/L (+10.6%) respectively.

Application of multiple linear regression and artificial neural network models to forecast long-term precipitation in the Geum River basin (다중회귀모형과 인공신경망모형을 이용한 금강권역 강수량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.723-736
    • /
    • 2022
  • In this study, monthly precipitation forecasting models that can predict up to 12 months in advance were constructed for the Geum River basin, and two statistical techniques, multiple linear regression (MLR) and artificial neural network (ANN), were applied to the model construction. As predictor candidates, a total of 47 climate indices were used, including 39 global climate patterns provided by the National Oceanic and Atmospheric Administration (NOAA) and 8 meteorological factors for the basin. Forecast models were constructed by using climate indices with high correlation by analyzing the teleconnection between the monthly precipitation and each climate index for the past 40 years based on the forecast month. In the goodness-of-fit test results for the average value of forecasts of each month for 1991 to 2021, the MLR models showed -3.3 to -0.1% for the percent bias (PBIAS), 0.45 to 0.50 for the Nash-Sutcliffe efficiency (NSE), and 0.69 to 0.70 for the Pearson correlation coefficient (r), whereas, the ANN models showed PBIAS -5.0~+0.5%, NSE 0.35~0.47, and r 0.64~0.70. The mean values predicted by the MLR models were found to be closer to the observation than the ANN models. The probability of including observations within the forecast range for each month was 57.5 to 83.6% (average 72.9%) for the MLR models, and 71.5 to 88.7% (average 81.1%) for the ANN models, indicating that the ANN models showed better results. The tercile probability by month was 25.9 to 41.9% (average 34.6%) for the MLR models, and 30.3 to 39.1% (average 34.7%) for the ANN models. Both models showed long-term predictability of monthly precipitation with an average of 33.3% or more in tercile probability. In conclusion, the difference in predictability between the two models was found to be relatively small. However, when judging from the hit rate for the prediction range or the tercile probability, the monthly deviation for predictability was found to be relatively small for the ANN models.

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.