• Title/Summary/Keyword: Narrow-Band

Search Result 836, Processing Time 0.023 seconds

Usefulness of Narrow-Band Imaging in Endoscopic Submucosal Dissection of the Stomach

  • Kim, Jung-Wook
    • Clinical Endoscopy
    • /
    • v.51 no.6
    • /
    • pp.527-533
    • /
    • 2018
  • There have been many advances in endoscopic imaging technologies. Magnifying endoscopy with narrow-band imaging is an innovative optical technology that enables the precise discrimination of structural changes on the mucosal surface. Several studies have demonstrated its usefulness and superiority for tumor detection and differential diagnosis in the stomach as compared with conventional endoscopy. Furthermore, magnifying endoscopy with narrow-band imaging has the potential to predict the invasion depth and tumor margins during gastric endoscopic submucosal dissection. Classifications of the findings of magnifying endoscopy with narrow-band imaging based on microvascular and pit patterns have been proposed and have shown excellent correlations with invasion depth confirmed by microscopy. In terms of tumor margin prediction, magnifying endoscopy with narrow-band imaging offers superior delineation of gastric tumor margins compared with traditional chromoendoscopy with indigo carmine. The limitations of narrow-band imaging, such as the need for considerable training, long procedure time, and lack of studies about its usefulness in undifferentiated cancer, should be resolved to confirm its value as a complementary method to endoscopic submucosal dissection. However, the role of magnifying endoscopy with narrow-band imaging is expected to increase steadily with the increasing use of endoscopic submucosal dissection for the treatment of gastric tumors.

ESTIMATION OF PHOTOSYNTHETIC LIGHT USE EFFICIENCY IN A SINGLE LEAF BY ANALYZING NARROW-BAND SPECTRAL REFLECTANCE

  • Suh, Kyehong
    • Journal of Photoscience
    • /
    • v.7 no.4
    • /
    • pp.139-142
    • /
    • 2000
  • To examine applicability of some optical indices from reflectance to estimate photosynthetic light use efficiency, photosynthesis, and narrow band spectral reflectance were simultaneously measured at various intensities of light with mongolian oak leaves. Narrow band of the broad-band NDVI was better than photochemical reflectance index and simple ratio to estimate photosynthetic light use efficiency in this study. Changes in spectral reflectance were detected at several wavelengths (540nm, 690nm, 740nm, and 800nm) associated with physiological status of plant leaves that could be components for new optical indices.

  • PDF

Narrow Band Interference Suppression In Multiuser CDMA System By Linear Prediction In Subband

  • Yoon-Gi Yang
    • Journal of Internet Computing and Services
    • /
    • v.2 no.3
    • /
    • pp.27-36
    • /
    • 2001
  • Recently much attention has been paid for interference mitigation technique for the COMA system, since more capacity is available with same bandwidth. In this paper, we introduces a novel adaptive interference suppression techniques for the CDMA system with narrow band interference. The proposed interference rejection scheme employs the adaptive linear prediction techniques in the subband. In each subband, we can more easily find and cancel the narrow band signal as compared to the full band. Thus, the proposed interference rejection can be classified as another time-frequency techniques for the narrow band interference rejection(10). Computer simulation is conducted for the 3-G COMA system with IF band sampling techniques, yielding better interference rejection and bit error rate performance as compared to conventional one. Also, optimum filter is analyzed and from the analysis, it can be shown the subband prediction techniques can suppress narrow band interference more efficiently.

  • PDF

A study on the wsggm-based spectral modeling of radiation properties of water vapor (회체가스중합법에 의한 수증기의 파장별 복사물성치 모델에 관한 연구)

  • Kim, Uk-Jung;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3371-3380
    • /
    • 1996
  • Low resolution spectral modeling of water vapor is carried out by applying the weighted-sum-of-gray-gases model (WSGGM) to a narrow band. For a given narrow band, focus is placed on proper modeling of gray gas absorption coefficients vs. temeprature relation used for any solution methods for the Radiative Transfer Equation(RTE). Comparison between the modeled emissivity and the "true" emissivity obtained from a high temperatue statistical narrow band parameters is made ofr the total spectrum as well as for a few typical narrow bands. Application of the model to nonuniform gas layers is also made. Low resolution spectral intensities at the boundary are obtained for uniform, parabolic and boundary layer type temeprature profiles using the obtained for uniform, parabolic and boundary layer type temperature profiles using the obtained WSGGM's with 9 gray gases. The results are compared with the narrow band spectral intensities as obtained by a narrow band model-based code with the Curtis-Godson approximation. Good agreement is found between them. Local heat source strength and total wall heat flux are also compared for the cases of Kim et al, which again gives promising agreement.

Narrow Band Interference Rejection for Spectrum Overlay Communications (주파수 복수통신을 위한 협대역 간섭신호제거)

  • 김제우;김희동;조동호
    • Information and Communications Magazine
    • /
    • v.13 no.11
    • /
    • pp.181-191
    • /
    • 1996
  • In this paper we discuss narrow-band interference rejection schemes for spectrum overlay communications where direct sequence spread spectrum (DS/SS) communication system and narrow-band communication systems share the same frequency band. In this case, it is essential to reject the narrow-band signals to guarantee the performance of DS/SS system, while it is not necessarily required to reject the DS/SS signal to recover the narrow-band signal. We discuss several schemes such as time domain processing, frequency domain processing and exploiting the device characteristics to reduce the effect of narrow-band signal on DS/SS communication systems. Furthermore, we suggest a structure of tunable notch filter using gyrator that can easily be customized to ASIC.

  • PDF

Design and Fabrication of SiO2/TiO2 Multi Layer Thin Films on Silicon Encapsulation of LED Deposited by E-beam Evaporation for NIR Narrow Band Pass Filter Application (NIR 협대역 투과 필터 응용을 위한 LED 실리콘 봉지재 위에 직접 E-beam으로 증착 된 SiO2/TiO2 다층 박막 설계 및 제작)

  • Kim, Dong Pyo;Kim, Kyung-Seob;Kim, Goo-Cheol;Jeong, Jung-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.165-171
    • /
    • 2022
  • The SiO2/TiO2 multilayer thin films used for narrow band pass filter were fabricated using E-beam evaporation method. The narrow band pass filter was used to enhance the resolution of spectroscopy and sensor applications with near infrared (NIR) light source. The narrow band pass filter with multilayer thin films were designed with Essential Macleod program. The multilayers of SiO2/TiO2 with 32 layers were deposited on the silicon encapsulation of IR with peak wavelength (λp) of 660 nm and NIR LEDs with λp of 830 nm, 880 nm, and 955 nm. After NIR light passed through the narrow band pass filter, the full width of half maximum of 33.4~48.6 nm became narrow to 20~24 nm owing to the absorption of photons with short or long wavelength of designed band of 20 nm. The SiO2/TiO2 band pass filter fabricated in this study can be used for sensor, optoelectronics, and NIR spectroscopy applications.

Suppression of IEEE 802.11a Interference in TH-UWB Systems Using Singular Value Decomposition in Wireless Multipath Channels

  • Xu, Shaoyi;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.63-70
    • /
    • 2008
  • Narrow-band interference (NBI) from the coexisting narrow-band services affects the performance of ultra wideband (UWB) systems considerably due to the high power of these narrow-band signals with respect to the UWB signals. Specifically, IEEE 802.11a systems which operate around 5 GHz and overlap the band of UWB signals may interfere with UWB systems significantly. In this paper, we suggest a novel NBI suppression technique based on singular value decomposition (SVD) algorithm in time hopping UWB (TH-UWB) systems. SVD is used to approximate the interference which then is subtracted from the received signals. The algorithm precision and closed-form bit error rate (BER) expression are derived in the wireless multipath channel. Comparing with the conventional suppression methods such as a notch filter and a RAKE receiver, the proposed method is simple and robust and especially suitable for UWB systems.

A Dual-Mode Narrow-Band Channel Filter and Group-Delay Equalizer for a Ka-Band Satellite Transponder

  • Kahng, Sung-Tek;Uhm, Man-Seok;Lee, Seong-Pal
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.379-386
    • /
    • 2003
  • This paper presents the design of a narrow-band channel filter and its group-delay equalizer for a Ka-band satellite transponder. We used an 8th order channel filter for high selectivity with an elliptic-integral function response and an inline configuration. We designed a 2-pole, reflection-type, group-delay equalizer to compensate for the steep variation of the group-delay at the output of the channel filter, keeping the thermal stability at ${\pm}7$ ns of group-delay variation at the band edges over 15-55$^{\circ}C$. We devised a new tuning technique using short-ended dummy cavities and used it for tuning both the filter and equalizer; this removes the necessity of additional tuning after the cavities are assembled. Through measurement, we demonstrate that the group-delay-equalized filter meets the equipment requirements and is appropriate for satellite input multiplexers.

  • PDF

The Analysis of Effect for Photocoupler by Narrow-Band High-Power Electromagnetic Wave (협대역 고출력 전자기파에 의한 포토커플러 영향 분석)

  • Lee, Sung-Woo;Huh, Chang-Su;Seo, Chang-Su;Jin, In-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • This study analyzed the change of electrical characteristics of a photocoupler when a narrow-band electromagnetic wave was combined with the photocoupler. A magnetron (3 kW, 2.45 GHz) was used as the narrow-band electromagnetic source. The EUT was Photocoupler (6N139) and the input signal was divided into two types: a square pulse and the second signal is 0 V. The malfunction of the photocoupler was confirmed by monitoring the variation in the output voltage of the photocoupler. As a result of the experiment, changes in the malfunctioning was observed as the electric field was increased. There are three types of malfunction modes: delay, output voltage off, and fluctuation. Bit errors were analyzed to verify the electrical characteristics of the photocoupler by narrow-band electromagnetic waves. The result of this study can be used as basic data for the effect analysis of photocoupler protection and impact analysis of high-power electromagnetic waves.