• Title/Summary/Keyword: Narrow band imaging

Search Result 63, Processing Time 0.023 seconds

SH 2-128, AN H II AND STAR FORMING REGION IN AN UNLIKELY PLACE

  • BOHIGAS JOAQUIN;TAPIA MAURICIO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.285-288
    • /
    • 2004
  • Near-infrared imaging photometry supplemented by optical spectroscopy and narrow-band imaging of the H II region Sh 2-128 and its environment are presented. This region contains a developed H II region and the neighboring compact H II region S 128N associated with a pair of water maser sources. Midway between these, the core of a CO cloud is located. The principal ionizing source of Sh 2-128 is an 07 star close to its center. A new spectroscopic distance of 9.4 kpc is derived, very similar to the kinematic distance to the nebula. This implies a galactocentric distance of 13.5 kpc and z = 550 pc. The region is optically thin with abundances close to those predicted by galactocentric gradients. The $JHK_s$ images show that S 128N contains several infrared point sources and nebular emission knots with large near-infrared excesses. One of the three red Ks knots coincides with the compact H II region. A few of the infrared-excess objects are close to known mid- and far-infrared emission peaks. Star counts in J and $K_s$ show the presence of a small cluster of B-type stars, mainly associated with S 128N. The $JHK_s$ photometric properties together with the characteristics of the other objects in the vicinity suggest that Sh 2-128 and S 128N constitute a single complex formed from the same molecular cloud, with ages ${\~}10^6$ and < $3 {\times} 10^5$ years respectively. No molecular hydrogen emission was detected at 2.12 ${\mu}m$. The origin of this remote star forming region is an open problem.

Preliminary observational results with MIRIS

  • Han, Wonyong;Pyo, Jeonghyun;Kim, Il-Joong;Lee, Dae-Hee;Jeong, Woong-Seob;Moon, Bongkon;Park, Youngsik;Park, Sung-Joon;Lee, Dukhang;Park, Won-Kee;Ko, Kyeongyeon;Kim, Min Gyu;Nam, Uk-Won;Lee, Hyung Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2015
  • The first Korean infrared space telescope MIRIS (Milti-purpose InfraRed Imaging System) was successfully launched in November 2013, as the main payload of Korean STSAT-3 (Science and Technology Satellite-3). After initial on-orbit operation for verification, the observations have been made with MIRIS for the fluctuation of Cosmic Infrared Background and the Galactic Plane survey. For the study of near-infrared background, MIRIS completed the survey of large areas (> $10^{\circ}{\times}10^{\circ}$ around the pole regions: the north ecliptic pole (NEP), the north and south Galactic poles (NGP, SGP). We are also continuously and frequently monitoring the NEP region for the instrumental calibration and the zodiacal light study. One the other hand, the Paschen-${\alpha}$ Galactic plane survey has been carried out using two narrow-band filters (at $1.88{\mu}m$ and $1.84+1.92{\mu}m$) of MIRIS. This survey is planning to cover the whole Galactic plane with the latitude of ${\pm}3^{\circ}$, and the longitude regions of $+280^{\circ}<l<360^{\circ}$ and $0^{\circ}<l<+210^{\circ}$ have been completed (~ 80%) by February 2015. The data are still under the stage of reduction and analysis, and we present some preliminary results.

  • PDF

Mapping the Polarization of the Radio-Loud Lyman Alpha Nebula B3 J2330+3927

  • Yang, Yujin;You, Chang;Zabludoff, Ann;Smith, Paul;Jannuzi, Buell;Prescott, Moire
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.28.3-29
    • /
    • 2015
  • $Ly{\alpha}$ nebulae, or "$Ly{\alpha}$ blobs", are extended (~100 kpc), bright (L[$Ly{\alpha}$] ~ 1044 erg/s) clouds of $Ly{\alpha}$-emitting gas. The origin of the $Ly{\alpha}$ emission remains unknown, but recent theoretical work suggests that measuring the polarization could discriminate among powering mechanisms. we will discuss current status of $Ly{\alpha}$ polarization observations at high-redshift and our on-going survey program. We will present the first narrow-band, imaging polarimetry of a $Ly{\alpha}$ blob, B3 J2330+3927 at z=3.09, with an embedded, radio-loud AGN (C. You et al. in prep.). The AGN lies near the blob's $Ly{\alpha}$ emission peak and its radio lobes align roughly with the blob's semi-major axis. With the SPOL polarimeter on the MMT telescope, we map the polarization in a grid of circular apertures of radius 0.6" (4.4 kpc), detecting a significant (>$2{\sigma}$) polarization fraction P% in 10 apertures and achieving strong upper-limits (as low as 2%) elsewhere. The degree of the polarization map increases from P% ~ 5% at ~5 kpc from the blob center to ~20% at the outer part (~30 kpc). The detections are distributed asymmetrically, roughly along the blob's major axis. The polarization angles (${\Theta}$) are mostly perpendicular to this axis. These results are consistent with the picture that $Ly{\alpha}$ photons produced at the AGN (or the host galaxy) are resonantly scattered away from the center. Higher polarization fraction on the radio jet suggests that the gas is more optically thin along the jet than the off-axis region.

  • PDF

Molecular Hydrogen Outflow in Infrared Dark Cloud Core MSXDC G53.11+00.05

  • Kim, Hyun-Jeong;Koo, Bon-Chul;Pyo, Tae-Soo;Davis, Christopher J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.41.4-42
    • /
    • 2015
  • Outflows and jets from young stellar objects (YSOs) are prominent observational phenomena in star formation process. Indicating currently ongoing star formation and directly tracing mass accretion, they provide clues about the accretion processes and accretion history of YSOs. While outflows of low-mass YSOs are commonly observed and well studied, such studies for high-mass YSOs have been so far rather limited owing to their large distances and high visual extinction. Recently, we have found a number of molecular hydrogen (H2 1-0 S(1) at 2.12 micron) outflows in the long, filamentary infrared dark cloud (IRDC) G53.2 located at 1.7 kpc from UWISH2, the unbiased, narrow-band imaging survey centered at 2.12 micron using WFCAM/UKIRT. In IRDC G53.2 which is an active star-forming region with ~300 YSOs, H2 outflows are ubiquitously distributed around YSOs along dark filaments. In this study, we present the most prominent H2 outflow among them identified in one of the IRDC cores MSXDC G53.11+00.05. The outflow shows a remarkable bipolar morphology and has complex structures with several flows and knots. The outflow size of ~1 pc and H2 luminosity about ~1.2 Lsol as well as spectral energy distributions of the Class I YSOs at the center suggest that the outflow is likely associated with a high-mass YSO. We report the physical properties of H2 outflow and characteristics of central YSOs that show variability between several years using the H2 and [Fe II] images obtained from UWISH2, UWIFE and Subaru/IRCS+AO188 observations. Based on the results, we discuss the possible origin of the outflow and accretion processes in terms of massive star formation occurring in IRDC core.

  • PDF

Improved Detection of Helicobacter pylori Infection and Premalignant Gastric Mucosa Using "Site Specific Biopsy": a Randomized Control Clinical Trial

  • Tongtawee, Taweesak;Dechsukhum, Chavaboon;Leeanansaksiri, Wilairat;Kaewpitoon, Soraya;Kaewpitoon, Natthawut;Loyd, Ryan A;Matrakool, Likit;Panpimanmas, Sukij
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8487-8490
    • /
    • 2016
  • Background: Helicobacter pylori infection and premalignant gastric mucosa can be reliably identified using conventional narrow band imaging (C-NBI) gastroscopy. The aim of our study was to compare standard biopsy with site specific biopsy for diagnosis of H. pylori infection and premalignant gastric mucosa in daily clinical practice. Materials and Methods: Of a total of 500 patients who underwent gastroscopy for investigation of dyspeptic symptoms, 250 patients underwent site specific biopsy using C-NBI (Group 1) and 250 standard biopsy (Group 2). Sensitivity, specificity, and positive and negative predictive values were assessed. The efficacy of detecting H. pylori associated gastritis and premalignant gastric mucosa according to the updated Sydney classification was also compared. Results: In group 1 the sensitivity, specificity, positive and negative predictive values for predicting H. pylori positivity were 95.4%, 97.3%, 98.8% and 90.0% respectively, compared to 92.9%, 88.6%, 83.2% and 76.1% in group 2. Site specific biopsy was more effective than standard biopsy in terms of both H. pylori infection status and premalignant gastric mucosa detection (P<0.01). Conclusions: Site specific biopsy using C-NBI can improve detection of H. pylori infection and premalignant gastric mucosa in daily clinical practice.

On time reversal-based signal enhancement for active lamb wave-based damage identification

  • Wang, Qiang;Yuan, Shenfang;Hong, Ming;Su, Zhongqing
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1463-1479
    • /
    • 2015
  • Lamb waves have been a promising candidate for quantitative damage identification for various engineering structures, taking advantage of their superb capabilities of traveling for long distances with fast propagation and low attenuation. However, the application of Lamb waves in damage identification so far has been hampered by the fact that the characteristic signals associated with defects are generally weaker compared with those arising from boundary reflections, mode conversions and environmental noises, making it a tough task to achieve satisfactory damage identification from the time series. With awareness of this challenge, this paper proposes a time reversal-based technique to enhance the strength of damage-scattered signals, which has been previously applied to bulk wave-based damage detection successfully. The investigation includes (i) an analysis of Lamb wave propagation in a plate, generated by PZT patches mounted on the structure; (ii) an introduction of the time reversal theory dedicated for waveform reconstruction with a narrow-band input; (iii) a process of enhancing damage-scattered signals based on time reversal focalization; and (iv) the experimental investigation of the proposed approach to enhance the damage identification on a composite plate. The results have demonstrated that signals scattered by delamination in the composite plate can be enhanced remarkably with the assistance of the proposed process, benefiting from which the damage in the plate is identified with ease and high precision.

Paschen ${\alpha}$ Galactic Plane Survey with MIRIS: the Preliminary Results for $l=280^{\circ}-100^{\circ}$

  • Kim, Il-Joong;Pyo, Jeonghyun;Jeong, Woong-Seob;Han, Wonyong;Park, Won-Kee;Lee, Dukhang;Moon, Bongkon;Park, Sung-Joon;Park, Youngsik;Lee, Dae-Hee;Ko, Kyeongyeon;Seon, Kwang-Il;Kim, Min Gyu;Lee, Hyung Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.78.2-78.2
    • /
    • 2014
  • MIRIS (Multi-purpose Infrared Imaging System) is the primary payload on the Korean science and technology satellite, STSAT-3, which was launched on 2013 November 21. It is designed to observe the near-infrared sky with a $3.67^{\circ}{\times}3.67^{\circ}$ field of view and a $51.6^{{\prime}{\prime}}{\times}51.6^{{\prime}{\prime}}$ pixel resolution. Using two narrow-band filters at $1.88{\mu}m$ (Pa ${\alpha}$ line) and $1.84+1.92{\mu}m$ (Pa ${\alpha}$ dual continuum), the Paschen ${\alpha}$ Galactic plane survey has been carrying out, and the area for the Galactic longitude from $+280^{\circ}$ to $+100^{\circ}$ (with the width of $-3^{\circ}$ < b < $+3^{\circ}$) has been covered by 2014 August 31. In this contribution, we present the preliminary results of the MIRIS Paschen ${\alpha}$ emission maps and compare them with other wavelength maps such as $H{\alpha}$ and dust maps. Many of the Paschen ${\alpha}$ features have been detected along the plane, and some of them are weak or invisible in the $H{\alpha}$ map and coincide well with dense cloud regions.

  • PDF

Development of the Infrared Space Telescope, MIRIS

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Nam, Uk-Won;Moon, Bon-Kon;Park, Sung-Joon;Cha, Sang-Mok;Pyo, Jeong-Hyun;Park, Jang-Hyun;Ka, Nung-Hyun;Seon, Kwang-Il;Lee, Duk-Hang;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • MIRIS (Multipurpose Infra-Red Imaging System), is a small infrared space telescope which is being developed by KASI, as the main payload of Science and Technology Satellite 3 (STSAT-3). Two wideband filters (I and H) of the MIRIS enables us to study the cosmic infrared background by detecting the absolute background brightness. The narrow band filter for Paschen ${\alpha}$ emission line observation will be employed to survey the Galactic plane for the study of warm ionized medium and interstellar turbulence. The opto-mechanical design of the MIRIS is optimized to operate around 200K for the telescope, and the cryogenic temperature around 90K for the sensor in the orbit, by using passive and active cooling technique, respectively. The engineering and qualification model of the MIRIS has been fabricated and successfully passed various environmental tests, including thermal, vacuum, vibration and shock tests. The flight model was also assembled and is in the process of system optimization to be launched in 2012 by a Russian rocket. The mission operation scenario and the data reduction software is now being developed. After the successful mission of FIMS (the main payload of STSAT-1), MIRIS is the second Korean space telescope, and will be an important step towards the future of Korean space astronomy.

  • PDF

DEVELOPMENT OF THE MECHANICAL STRUCTURE OF THE MIRIS SOC (MIRIS 우주관측카메라의 기계부 개발)

  • Moon, B.K.;Jeong, W.S.;Cha, S.M.;Ree, C.H.;Park, S.J.;Lee, D.H.;Yuk, I.S.;Park, Y.S.;Park, J.H.;Nam, U.W.;Matsumoto, Toshio;Yoshida, Seiji;Yang, S.C.;Lee, S.H.;Rhee, S.W.;Han, W.
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.53-64
    • /
    • 2009
  • MIRIS is the main payload of the STSAT-3 (Science and Technology Satellite 3) and the first infrared space telescope for astronomical observation in Korea. MIRIS space observation camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}\times3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200 K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI (Multi Layer Insulation) of 30 layers, and GFRP (Glass Fiber Reinforced Plastic) pipe support in the system. Optomechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

miniTAO/ANIR Paα SURVEY OF LOCAL LIRGs

  • Tateuchi, Ken;Motohara, Kentaro;Konishi, Masahiro;Takahashi, Hidenori;Kato, Natsuko;Uchimoto, Yuka K.;Toshikawa, Koji;Ohsawa, Ryou;Kitagawa, Yutaro;Yoshii, Yuzuru;Doi, Mamoru;Kohno, Kotaro;Kawara, Kimiaki;Tanaka, Masuo;Miyata, Takashi;Tanabe, Toshihiko;Minezaki, Takeo;Sako, Shigeyuki;Morokuma, Tomoki;Tamura, Yoichi;Aoki, Tsutomu;Soyano, Takeo;Tarusawa, Kenfichi;Koshida, Shintaro;Kamizuka, Takafumi;Nakamura, Tomohiko;Asano, Kentaro;Uchiyama, Mizuho;Okada, Kazushi;Ita, Yoshifusa
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.297-298
    • /
    • 2012
  • ANIR (Atacama Near InfraRed camera) is a near infrared camera for the University of Tokyo Atacama 1m telescope, installed at the summit of Co. Chajnantor (5,640 m altitude) in northern Chile. The high altitude and extremely low water vapor (PWV = 0.5 mm) of the site enable us to perform observation of hydrogen $Pa{\alpha}$ emission line at $1.8751{\mu}m$. Since its first light observation in June 2009, we have been carrying out a $Pa{\alpha}$ narrow-band imaging survey of nearby luminous infrared galaxies (LIRGs), and have obtained $Pa{\alpha}$ for 38 nearby LIRGs listed in AKARI/FIS-PSC at the velocity of recession between 2,800 km/s and 8,100 km/s. LIRGs are affected by a large amount of dust extinction ($A_V$~ 3 mag), produced by their active star formation activities. Because $Pa{\alpha}$ is the strongest hydrogen recombination line in the infrared wavelength ranges, it is a good and direct tracer of dust-enshrouded star forming regions, and enables us to probe the star formation activities in LIRGs. We find that LIRGs have two star-forming modes. The origin of the two modes probably come from differences between merging stage and/or star-forming process.