DOI QR코드

DOI QR Code

SH 2-128, AN H II AND STAR FORMING REGION IN AN UNLIKELY PLACE

  • Published : 2004.12.01

Abstract

Near-infrared imaging photometry supplemented by optical spectroscopy and narrow-band imaging of the H II region Sh 2-128 and its environment are presented. This region contains a developed H II region and the neighboring compact H II region S 128N associated with a pair of water maser sources. Midway between these, the core of a CO cloud is located. The principal ionizing source of Sh 2-128 is an 07 star close to its center. A new spectroscopic distance of 9.4 kpc is derived, very similar to the kinematic distance to the nebula. This implies a galactocentric distance of 13.5 kpc and z = 550 pc. The region is optically thin with abundances close to those predicted by galactocentric gradients. The $JHK_s$ images show that S 128N contains several infrared point sources and nebular emission knots with large near-infrared excesses. One of the three red Ks knots coincides with the compact H II region. A few of the infrared-excess objects are close to known mid- and far-infrared emission peaks. Star counts in J and $K_s$ show the presence of a small cluster of B-type stars, mainly associated with S 128N. The $JHK_s$ photometric properties together with the characteristics of the other objects in the vicinity suggest that Sh 2-128 and S 128N constitute a single complex formed from the same molecular cloud, with ages ${\~}10^6$ and < $3 {\times} 10^5$ years respectively. No molecular hydrogen emission was detected at 2.12 ${\mu}m$. The origin of this remote star forming region is an open problem.

Keywords

References

  1. Bohigas, J. 1988, A&A 205, 257
  2. Bohigas, J., & Tapia, M. 2003, AJ 126, 1861 https://doi.org/10.1086/378054
  3. Chini, R., & Wink, .J.E. 1984, A&A 139, L5
  4. Cruz-Gonzalez, I. et al. 1994, Proc. of SPIE, Astronomical Instrumentation, 8, 199
  5. Deharveng, L., Pena, M., Caplan, J., & Costero, R. 2000, MNRAS 311,329 https://doi.org/10.1046/j.1365-8711.2000.03030.x
  6. Giveon, U., Sternberg, A., Lutz, D., Feuchtgruber, H., & Pauldrach, A.W.A. 2002, ApJ 566, 880 https://doi.org/10.1086/338125
  7. Haschick A.D. & Ho, P.T.P. 1985, ApJ 292, 200 https://doi.org/10.1086/163147
  8. Ho, P.T.P, Haschick A.D. & Israel F.P. 1981, ApJ 243, 526 https://doi.org/10.1086/158617
  9. Hunter T.R., Churchwell E., Watson C., Cox P., Benford D.J. & Roelfsma P.R. 2000, AJ 119, 2711 https://doi.org/10.1086/301391
  10. Koornneeff 1983, A&A 128, 84
  11. Mampaso, A., Gomez, P., Sanchez-Magro, C., & Selby, M.J. 1984, MNRAS 207, 465 https://doi.org/10.1093/mnras/207.3.465
  12. Martin-Hernandez, N.L. et al. 2002, A&A 381, 606 https://doi.org/10.1051/0004-6361:20011504
  13. Rudolph, A.L., Simpson, J.P., Haas, M.R., Erickson, E.F., & Fich, M. 1997, ApJ 489, 94 https://doi.org/10.1086/304758
  14. Sabbadin F., Strafella F. & Bianchini A. 1986, A&AS 65, 259
  15. Schmidt-Kaler Th. 1982, In Landolt-Bornstein, Neue Ser., p. 1, Gr VI, Vol. 2b, Stars and Star Clusters, ed. K. Schaifers & H.H. Voight, Berlin:Springer, 10
  16. Seaton, M.J. 1979, MNRAS 187, 73P https://doi.org/10.1093/mnras/187.1.73P
  17. Sharpless, S 1959, ApJS 4, 257 https://doi.org/10.1086/190049
  18. Stasinska, G., & Schaerer, D. 1997, A&A 322, 615
  19. Tylenda, R., Acker, A., Raytchev, B., Stenholm, B., & Gleizes, F. 1991, A&AS 89, 77
  20. Vilchez, J.M., & Esteban, C. 1996, MNRAS 280, 720 https://doi.org/10.1093/mnras/280.3.720
  21. Zazueta, S. et al. 2000, RevMexAA 36 141