• Title/Summary/Keyword: Nanowire array

Search Result 35, Processing Time 0.025 seconds

고출력 펨토초 레이저와 플라즈마의 상호작용을 통한 극고속 X선 펄스의 발생

  • Jeong, Sang-Yeong;Hwang, Seok-Won;Lee, Hae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.38-38
    • /
    • 2010
  • 낮은 세기의 레이저와 정지한 전자가 반응하면 전자는 레이저 전기장 세기에 비례하여 가속되며 레이저의 파장과 같은 파장의 빛을 낸다. 반면, 레이저의 세기가 일정 수준을 넘으면 전자의 속도가 빛의 속도에 가까워지게 되어 가속이 둔화되는 현상이 나타나며, 더 이상 전기장의 세기와 가속도가 비례하지 않게 된다. 이러한 비선형적인 전자의 운동이 레이저 기본 파장의 조화파(harmonic)를 발생시키는데, 이를 상대론적 비선형 톰슨 산란(relativistic nonlinear Thomson scattering, RNTS)이라고 한다. 단일 전자를 가정한 경우 RNTS에 의해 아토초($10^{-18}$ 초) 길이의 X선 펄스가 발생하는 것이 시뮬레이션 연구를 통해 잘 알려졌다. [1] 그러나, 실제 실험에서 적용할 수 있는 것은 단일 전자가 아니라 고체, 플라즈마, 전자 빔 등의 전자 덩어리이다. 전자덩어리를 구성하는 각각의 전자가 아토초 펄스를 발생시더라도 각각의 펄스 간에 결맞음(coherence) 조건이 맞지 않으면 아토초 펄스는 발생되지 않는다. 또한, 강한 세기의 펄스를 얻는데도 결맞음은 중요하다. 이 연구에서는 결맞음 조건으로 얇은 타깃에 대한 거울 반사 조건, 즉 레이저가 얇은 타깃에 입사되며 거울의 반사 조건을 만족하는 위치에 검출기(detector)를 위치시키는 방법을 제안하였다. 박막이 충분히 얇을 경우 각각의 전자에 대하여 레이저가 발사되어 타깃에 맞고 검출되기까지의 시간이 거의 일치하게 된다. 거울 반사 조건에 의한 아토초 펄스 발생은 particle-in-cell 방법을 통한 시뮬레이션으로 검증되었다. 결맞음 조건을 위한 얇은 타깃으로는 박막과 나노선 배열(nanowire array)을 사용하였다. 전자들 간의 쿨롱(Coulomb) 힘은 결맞음이 유지되는 것을 방해하는데, 박막에 비해 나노선 배열이 쿨롱 힘의 영향을 적게 받기 때문에 결맞음이 더 잘 유지된다.

  • PDF

Structural ordering, electronic and magnetic properties of bundled $Mo_6S_9-_xI_x$ nanowires

  • Kang, Seoung-Hun;Tomanek, David;Kwon, Young-Kyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.55-55
    • /
    • 2010
  • We use ab initio density functional theory to determine the effect of bundling on the equilibrium structure, electronic and magnetic properties of $Mo_6S_{9-x}I_x$nanowires with x = 0, 3, 4.5, 6. Each unit cell of these systems contains two $Mo_6S_{6-x}I_x$ clusters connected by S3 linkages to form an ordered linear array. Due to the bi-stability of the sulfur linkages, the total energy of the nanowires exhibits typically many minima as a function of the wire length. We find that nanowires can switch over from metallic to semiconducting by applying axial stress. Structural order is expected in bundles with x=0 and x=6, since there is no disorder in the decoration of the Mo clusters. In bundles with other stoichiometries, we expect structural disorder to occur. We find the optimum inter-wire distance to depend sensitively on the orientation of the wires, but only weakly on x. It is also found that the electronic properties of nanowires are affected strongly due to bundling of nanowires exhibiting very unusual Fermi surfaces. Furthermore, ferromagnetic behaviors are observed in selected stable and many more unstable atomic arrangements in nanowire bundles.

  • PDF

Fabrication of Flexible Energy Harvester Based on BaTiO3 Piezoelectric Nanotube Arrays (BaTiO3 압전 나노튜브 어레이 기반의 플렉서블 에너지 하베스터 제작)

  • Seo Young Yoon;Cheol Min Kim;Bitna Bae;Yujin Na;Haksu Jang;Kwi-Il Park
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.521-527
    • /
    • 2023
  • Piezoelectric technology, which converts mechanical energy into electrical energy, has recently attracted drawn considerable attention in the industry. Among the many kinds of piezoelectric materials, BaTiO3 nanotube arrays, which have outstanding uniformity and anisotropic orientation compared to nanowire-based arrays, can be fabricated using a simple synthesis process. In this study, we developed a flexible piezoelectric energy harvester (f-PEH) based on a composite film with PVDF-coated BaTiO3 nanotube arrays through sequential anodization and hydrothermal synthesis processes. The f-PEH fabricated using the piezoelectric composite film exhibited excellent piezoelectric performance and high flexibility compared to the previously reported BaTiO3 nanotube array-based energy harvester. These results demonstrate the possibility for widely application with high performance by our advanced f-PEH technique based on BaTiO3 nanotube arrays.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Preparation of Dual-functionalized Polymeric Membrane Electrolyte and Ni, Co-based Nanowire/MOF Array on Carbon Cloth for High-performance Supercapacitor (이중 기능 고분자 전해질 막의 제조 및 탄소 섬유에 니켈, 코발트 기반의 나노와이어/MOF 배열을 통한 고성능 슈퍼커패시터 연구)

  • Hye Jeong Son;Bong Seok Kim;Ji Min Kwon;Yu Bin Kang;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.211-221
    • /
    • 2023
  • This study presents a comprehensive study on the synthesis and characterization of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C flexible electrodes for energy storage applications. The dual-functional PVI-PGMA copolymer exhibited excellent ionic conductivity, with the PVI-PGMA73/LiTFSI200 membrane electrolyte achieving the highest conductivity of 1.0 × 10-3 S cm-1. The electrochemical performance of the CxNy-C electrodes was systematically investigated, with C3N2-C demonstrating superior performance, achieving the highest specific capacitance of 958 F g-1 and lowest charge transfer resistance (Rct) due to its highly interconnected hybrid structure comprising nanowires and polyhedrons, along with binary Co/Ni oxides, which provided abundant redox-active sites and facilitated ion diffusion. The presence of a graphitic carbon shell further contributed to the enhanced electrochemical stability during charge-discharge cycles. These results highlight the potential of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C electrodes for advanced energy storage devices, such as supercapacitors and lithium-ion batteries, paving the way for further advancements in sustainable and high-performance energy storage technologies.