DOI QR코드

DOI QR Code

Fabrication of Flexible Energy Harvester Based on BaTiO3 Piezoelectric Nanotube Arrays

BaTiO3 압전 나노튜브 어레이 기반의 플렉서블 에너지 하베스터 제작

  • Seo Young Yoon (School of Materials Science and Engineering, Kyungpook National University) ;
  • Cheol Min Kim (School of Materials Science and Engineering, Kyungpook National University) ;
  • Bitna Bae (School of Materials Science and Engineering, Kyungpook National University) ;
  • Yujin Na (School of Materials Science and Engineering, Kyungpook National University) ;
  • Haksu Jang (School of Materials Science and Engineering, Kyungpook National University) ;
  • Kwi-Il Park (School of Materials Science and Engineering, Kyungpook National University)
  • 윤서영 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 김철민 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 배빛나 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 나유진 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 장학수 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 박귀일 (경북대학교 신소재공학부 금속신소재공학전공)
  • Received : 2023.12.07
  • Accepted : 2023.12.13
  • Published : 2023.12.28

Abstract

Piezoelectric technology, which converts mechanical energy into electrical energy, has recently attracted drawn considerable attention in the industry. Among the many kinds of piezoelectric materials, BaTiO3 nanotube arrays, which have outstanding uniformity and anisotropic orientation compared to nanowire-based arrays, can be fabricated using a simple synthesis process. In this study, we developed a flexible piezoelectric energy harvester (f-PEH) based on a composite film with PVDF-coated BaTiO3 nanotube arrays through sequential anodization and hydrothermal synthesis processes. The f-PEH fabricated using the piezoelectric composite film exhibited excellent piezoelectric performance and high flexibility compared to the previously reported BaTiO3 nanotube array-based energy harvester. These results demonstrate the possibility for widely application with high performance by our advanced f-PEH technique based on BaTiO3 nanotube arrays.

Keywords

Acknowledgement

본 연구는 2023년도 과학기술정보통신부의 재원으로 한국연구재단의 지원(No. 2021R1A4A2001658 and No. 2022R1A2C1003853)을 받아 수행되었습니다.

References

  1. K. Calautit, D. S. N. M. Nasir and B. R. Hughes: Renew. Sust. Energ. Rev., 147 (2021) 111230.
  2. Y. Gu, T. Zhang, H. Chen, F. Wang, Y. Pu, C. Gao and S. Li: Nanoscale Res. Lett., 263 (2019) 14.
  3. R. G. Newell, D. Raimi and G. Aldana: Resources for the Future, 1 (2019) 8.
  4. C. Bianco, F. Cucchietti and G. Griffa: INTELEC., 29 (2007) 737.
  5. K. Uchino: Energy Technol., 6 (2017) 829.
  6. J. Liang and W. H. Liao: Smart Mater. Struct., 20 (2010) 11.
  7. N. Sezer and M. Koc: Nano Energy, 80 (2021) 105567.
  8. C. Zhao, B. Wu, H. C. Thong and J. Wu: J. Eur. Ceram., 38 (2018) 5411.
  9. H. Luo, H. Liu, S. Deng, S. Hu, L. Wang, B. Gao, S. Sun, T. Ren, L. Qiao and J. Chen: Acta Mater., 208 (2021) 116711.
  10. Z. Wang, Z. Liu, G. Zhao, Z. Zhang, X. Zhao, X. Wan, Y. Zhang, Z. L. Wang and L. Li: ACS Nano, 16 (2022) 1661.
  11. J. Miao, C. Hu, H. Liu and Y. Xiong: Mater. Lett., 62 (2008) 235.
  12. K. Nakashima, K. Onagi, Y. Kobayashi, T. Ishigaki, Y. Ishikawa, Y. Yoneda, S. Yin, M. Kakihana and T. Sekino: ACS Omega, 6 (2021) 9410.
  13. J. Wu, N. Qin and D. Bao: Nano Energy, 45 (2018) 44.
  14. H. Tang, Z. Zhou and H. A. Sodano: ACS Appl. Mater. Interfaces, 6 (2014) 5450.
  15. T. Zhou, J. W. Zha, R. Y. Cui, B. H. Fan, J. K. Yuan and Z. M. Dang: ACS Appl. Mater. Interfaces, 3 (2011) 2184. https://doi.org/10.1021/am200492q
  16. K. I. Park, M. B. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang and K. J. Lee: Adv. Mater., 24 (2012) 2999.
  17. Z. H. Lin, Y. yang, J. M. Wu, Y. Liu, F. Zhang and Z. L. Wang: J. Phys. Chem. Lett, 3 (2012) 3599.
  18. Y. F. Zhu, L. Zhang, T. Natsuki, Y. Q. Fu and Q. Q. Ni: ACS Appl. Mater. Interfaces, 4 (2012) 2101.
  19. Y. Yang, X. Wang, C. Sun and L. Li: Nanotechnology, 20 (2009) 055709.
  20. C. K. Jeong, J. H. Lee, D. Y. Hyeon, Y. G. Kim, S. H. Kim, C. Y. Baek, G. J. Lee, M. K. Lee, J. J. Park and K. I. Park: Appl. Surf. Sci., 512 (2020) 144784.
  21. J. H. Lee, D. Y. Hyeon, D. H. Heo and K. I. Park: J. Powder Mater., 28 (2021) 127.
  22. L. Lu, W. Ding, J. Liu and B. Yang: Nano Energy, 78 (2020) 105251. https://doi.org/10.1016/j.nanoen.2020.105251
  23. V. Cauda, S. Stassi, K. Bejtka and G. Canavese: ACS Appl. Mater. Interfaces, 5 (2013) 6430.
  24. B. Bera and M. D. Sarkar: J. Appl. Physics, 9 (2017) 95.
  25. J. Choi, J. K. Lee, J. H. Lim and S. J. Kim: J. Korean Ind. Eng. Chem., 19 (2008) 249.
  26. A. Koka, Z. Zhou, H. Tang and H. A. Sodano: Nanotechnology, 25 (2014) 375603.