• Title/Summary/Keyword: Nanotube

Search Result 1,932, Processing Time 0.029 seconds

Patent Trend Report for carbon nanotube of the display (디스플레이용 탄소나노튜브에 관한 특허동향분석)

  • Jeong, In-Seong;Seo, Yong-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.45-46
    • /
    • 2006
  • Application of the carbon nanotube is increasing continuously since 1991. In the studies of the carbon nanotube for the display, emitter has been actively developed, especially in FED. Other studies of carbon nanotube are the materials of LED and PDP for backlight and dielectrical matter because carbon nanotube is good electric conductor. This report presents about the carbon nanotube for the display.

  • PDF

Damping Characterization of Carbon Nanotube/Epoxy Composites (탄소나노튜브/에폭시 복합소재의 감쇠특성 분석)

  • Shin, Eung-Soo;Lee, Jong-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.497-502
    • /
    • 2003
  • This study intends to provide the analytical and experimental damping characterization of carbon nanotube/epoxy composites. A constitutive model based on continuum mechanics is employed to describe epoxy and the perfectly bonded and partially bonded nanotubes. An interfacial stick-slip between the nanotubes and epoxy is considered to characterize the damping of the composites. For experimental estimation, beam-type specimens are prepared with a variation of nanotube concentration from 0.5% to 2% in weight. An ultrasonic agitation method is employed for enhancing the nanotube dispersion within epoxy. Damping of the composites is characterized in terms of the strain and the nanotube concentration. Results show that the nanotube concentration significantly affects the damping characteristics of the nanocomposites. A good correlation is found between the analytical prediction based on the stick-slip and the experimental measurements.

  • PDF

Compressive and Torsional Buckling Behavior of Carbon Nanotube Bundles (탄소나노튜브 다발의 압축 및 비틀림 좌굴 거동)

  • Jeong, Byeong-Woo;Lim, Jang-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.862-869
    • /
    • 2007
  • The compressive and torsional buckling behavior of carbon nanotube bundles at room temperature is examined with classical molecular dynamics simulation. The critical compressive load and stiffness of a single carbon nanotube in the bundle are found to be similar to those of individual carbon nanotubes. However, the critical torsional moment and stiffness of a single carbon nanotube in the bundle are found to be higher than those of individual carbon nanotubes. In addition, this study demonstrates that van der Waals interactions between the nanotubes in the bundle significantly affect the critical compressive load of the nanotube bundle.

Transparent Counter Electrode for Quantum Dot-Sensitized Solar Cells with Nanotube Electrodes (나노튜브 전극 기반 양자점 감응 태양전지 구현을 위한 투명한 상대전극)

  • Kim, Jae-Yup
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • Anodic oxidized $TiO_2$ nanotube arrays are promising materials for application in photoelectrochemical solar cells as the photoanode, because of their attractive properties including slow electron recombination rate, superior light scattering, and smooth electrolyte diffusion. However, because of the opacity of these nanotube electrodes, the back-side illumination is inevitable for the application in solar cells. Therefore, for the fabrication of solar cells with the anodic oxidized nanotube electrodes, it is required to develop efficient and transparent counter electrodes. Here, we demonstrate quantum dot-sensitized solar cells (QDSCs) based on the nanotube photoanode and transparent counter electrodes. The transparent counter electrodes based on Pt electrocatalysts were prepared by a simple thermal decomposition methods. The photovoltaic performances of QDSCs with nanotube photoanode were tested and optimized depending on the concentration of Pt precursor solutions for the preparation of counter electrodes.

Equivalent Continuum Model for the Single Wall Carbon Nanotube (Single Wall Carbon Nanotube의 등가 연속체 모델에 대한 연구)

  • 김병구;전흥재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.227-234
    • /
    • 2003
  • In this study, an equivalent continuum model for single wall carbon nanotube is proposed. The model links interatomic potentials and atom structure of a materials to a constitutive model on the continuum level. The Young's modulus and shear modulus were predicted by the model. The predictions were in good agreement with the prior experimental results available in the literatures. Also, the strain energy of the carbon nanotube was predicted as a function of the radius of the carbon nanotube.

  • PDF

Nuclear Magnetic Resonance of Carbon Nanotube and Boron Nitride Nanotube (Carbon Nanotube 와 Boron Nitride Nanotube 의 핵자기공명)

  • 정재갑;유권상;남승훈;이규층;이무희;이영희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.22-27
    • /
    • 2004
  • 특성에 대한 많은 연구가 진행되었고, 새로운 나노 소자로서의 가능성을 보여왔다. CNT의 전기적 성질은 직경과 chirality 의 함수로서 금속 혹은 반도체 성질을 주기적으로 가지며, 이론적 연구에 의하면 단일구역의 CNT 는 1/3 이 금속성, 나머지는 밴드갭이 수 ㎷ 로 아주 작고, 나노튜브의 직경에 반비례하는 반도체 성질을 나타낸다.(중략)

Electrochemical Behavior of TiO2 Nanotube/Ti Prepared by Anodizing for Micro-Lithium Ion Batteries

  • Park, Soo-Gil;Yang, Jeong-Jin;Rho, Jin-Woo;Kim, Hong-Il;Habazaki, Hiroki
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.13-17
    • /
    • 2014
  • The $TiO_2$ nanotube/Ti electrode are used as an anode in thin-film lithium microbatteries is known to have high oxidation-reduction potential of 1.8 V (vs. $Li/Li^+$). It can prevent from dendrite growth of lithium during charging. The $TiO_2$ nanotube/Ti electrode was prepared by anodizing at constant voltages for thin-film lithium microbatteries. The capacities of $TiO_2$ nanotube/Ti anode prepared by anodizing at 10 V, 20 V and 30 V were observed to be $23.9{\mu}Ah\;cm^{-2}$, $43.1{\mu}Ah\;cm^{-2}$ and $74.0{\mu}Ah\;cm^{-2}$. We identified it was found that the capacity of $TiO_2$ nanotube/Ti increases with increasing anodizing voltage and the anatase structure of $TiO_2$ nanotube/Ti compared with amorphous structure has batter cycle performance than amorphous $TiO_2$ nanotube/Ti.

Synthesis of $TiO_2$ nantubes coupled with ${\alpha}-Fe_2O_3$ nanoparticles and investigation of their photoelectrochemical activity

  • Mao, Aiming;Park, Jong-Hyeok;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.99-102
    • /
    • 2009
  • $TiO_2$ nanotube arraysdecorated with ${\alpha}-Fe_2O_3$ were prepared by forming a nanotube-like $TiO_2$ film on a Ti sheet using an anodization process, followed by electrochemical deposition treatment to decorate hematite (${\alpha}-Fe_2O_3$) nanoparticles on the $TiO_2$ nanotube arrays. The SEM and XRD results revealed that the ${\alpha}-Fe_2O_3$ nanoparticles were homogeneously embedded on the surface of the $TiO_2$ nanotube arrays. The activity of hydrogen production by photocatalytic water decomposition for the ${\alpha}-Fe_2O_3/TiO_2$ nanotube array composite was examined under visible light irradiation.

  • PDF

Analytical Modeling of Carbon Nanotube Actuators (탄소나노튜브 액츄에이터의 이론적 모델링)

  • 염영일;박철휴
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1006-1011
    • /
    • 2004
  • Carbon nanotubes have outstanding properties which make them useful for a number of high-technology applications. Especially, single-walled carbon nanotube (SWNT), working under physical conditions (in aqueous solution) and converting electrical energy into mechanical energy directly, can be a good substitute for artificial muscle. The carbon nanotube structure simulated in this paper is an isotropic cantilever type with an adhesive tape which is sandwiched between two SWNTs. For predicting the geometrical and physical parameters such as deflection, slope, bending moment and induced force with various applied voltages, the analytical model for a 3 layer bimorph nanotube actuator is developed by applying Euler-Bernoulli beam theory. The governing equation and boundary conditions are derived from energy Principles. Also, the brief history of carbon nonotube is overviewed and its properties are compared with other functional materials. Moreover, an electro-mechanical coupling coefficient of the carbon nanotube actuator is discussed to identify the electro-mechanical energy efficiency.