• Title/Summary/Keyword: Nanostructured powders

Search Result 84, Processing Time 0.016 seconds

On the Properties and Synthesis of Nanostructured W-Cu alloys by Mechanical Alloying(II) Sintering Behavior of MA NS W-Cu Composite Powders (기계적 합금화 방법으로 제조된 nanostructured W-Cu 합금의 제조 및 물성 연구(II) -MA NS W-Cu 복합분말의 소결거동-)

  • 김진천
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.89-97
    • /
    • 1998
  • Sintering behavior of nanostructured(NS) W-Cu powders prepared by mechanical alloying (MA) was investigated as a function of sintering temperature. MA NS W-2owt%Cu and W-3owt%Cu composite powders with the crystal size of 20-30 nm were annealed at 90$0^{\circ}C$, and thermal characteristics of those powders were investigated by DSC. Sintering behavior of MA NS W-Cu composite powders was investigated during the solid-state sintering and the Cu-liquid phase sintering. The new nanosintering phenonenon of MA W-Cu powders at solid-state sintering temperature was suggested to explain the W-grain growth in the inside of MA powders. The sintering densification of MA NS W-Cu powders was enhanced at Cu melting temperature by arrangement of MA powders, i.e., the first rearrangement of MA powders was occurred, and then the rearrangement of W-grains in the sintered parts was also took place during liquid-phase sintering, i.e., the second rearrangement was happened. Due to the double rearrangement process of MA NS W-Cu powders, the high sintered density with more than 96%o was obtained and the fine and high homogeneous state of W and Cu phases was achieved by sintering at 1200 $^{\circ}C$.

  • PDF

Fabrication of Nanostructured Fe-Co Alloy Powders by Hydrogen Reduction and its Magnetic Properties

  • Lee, Young-Jung;Lee, Baek-Hee;Kim, Gil-Su;Lee, Kyu-Hwan;Kim, Young-Do
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.120-121
    • /
    • 2006
  • Magnetic properties of nanostructured materials are affected by the microstructures such as grain size (or particle size), internal strain and crystal structure. Thus, it is necessary to study the synthesis of nanostructured materials to make significant improvements in their magnetic properties. In this study, nanostructured Fe-20at.%Co and Fe-50at.%Co alloy powders were prepared by hydrogen reduction from the two oxide powder mixtures, $Fe_2O_3$ and $Co_3O_4$. Furthermore, the effect of microstructure on the magnetic properties of hydrogen reduced Fe-Co alloy powders was examined using XRD, SEM, TEM, and VSM.

  • PDF

Chemical Solution Mixing and Hydrogen Reduction Method for Fabrication of Nanostructured Fe-Co Alloy Powders (화학용액 혼합과 수소환원법을 이용한 나노구조 Fe-Co 합금분말의 제조)

  • 박광현;박현우;이백희;장시영;이정근;김영도
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.137-142
    • /
    • 2004
  • In this study, chemical solution mixing and hydrogen reduction method was used to fabricate nanostructured $Fe_xCo_{1-x}$ alloy powders. Fe-Co chloride mixture, FeCl$_2$ and COCI$_2$ with 99.9% purity, were reduced in hydrogen atmosphere. Nanostructured Fe-Co alloy powders with a grain size of 50 nm were successfully fabricated. Magnetic properties of fabricated $Fe_xCo_{1-x}$(x=0, 10, 30, 50, 70, 100) alloy powders with the same grain size were measured because size factor can affect magnetic properties. Coercivity of Fe-Co alloy powders were increased with increasing Co contents. Maximum value of coercivity in various Co contented Fe-Co alloy powders with similar grain size was 125 Oe at Fe$_{100}$. Saturation magnetization value at Fe$_{70}$Co$_{30}$ composition showed maximum value of 219 emu/g and saturation magnetization value decreased with increasing Co contents and minimum value of 155 emu/g was observed at Co$_{100}$.

Synthesis of Nanostructured Ceria Powders for an Oxygen-sensor by Thermochemical Process (열화학적 방법에 의한 산소센서용 세리아 나노분말 합성)

  • Lee Dong-Won;Choi Joon-Hwan;Lim Tae-Soo;Kim Yong-Jin
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.192-198
    • /
    • 2006
  • The nanostructured cerium oxide powders were synthesized by spray thermal decomposition process for the use as the raw materials of resistive oxygen sensor. The synthesis routes consisted of 1) spray drying of water based organic solution made from cerium nitrate hydrate ($Ce(NO_3){_3}6H_2O$) and 2) heat treatment of spray dried precursor powders at $400^{\circ}C$ in air atmosphere to remove the volatile components and identically to oxidize the cerium component. The produced powders have shown the loose structure agglomerated with extremely fine cerium oxide particles with about 15 nm and very high specific surface area ($110m^2/g$). The oxygen sensitivity, n ($Log{\propto}Log (P_{O2}/P^o)^{-n}$ and the response time, $t_{90}$ measured at $600^{\circ}C$ in the sample sintered at $1000^{\circ}C$, were about 0.25 and 3 seconds, respectively, which had much higher performances than those known in micron or $100{\sim}200nm$ sized sensors.

Effect of Grain Size on Nanostructured Fe-20 wt.%Si Alloy Powders Produced by High-energy ball milling (고에너지 볼밀링으로 제조된 나노구조 Fe-20 wt.%Si 합금 분말의 자성 특성에 미치는 결정립 크기의 영향)

  • Kim, Se-Hoon;Lee, Young Jung;Lee, Baek-Hee;Lee, Kyu Hwan;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.12 no.5 s.52
    • /
    • pp.362-368
    • /
    • 2005
  • The structural and magnetic properties of nanostructued Fe-20 ;wt.%Si alloy powders were investigated. Commercial Fe-20 wt.%Si alloy powders (Hoeganaes Co., USA) with 99.9% purities were used to fabricate the nanostructure Fe-Si alloy powders through a high-energy ball milling process. The alloy powders were fabricated at 400 rpm for 50 h, resulting in an average grain size of 16 nm. The nanostructured powder was characterized by fcc $Fe_{3}Si$ and hcp $Fe_{5}Si_3$ phases and exhibited a minimum coercivity of approximately 50 Oe.

On Properties and Synthesis of Nanostructured W-Cu Alloys by Mechanical Alloying(I) (기계적합금화 방법에 의한 Nanostructured W-Cu 합금의 제조 및 물성연구(I))

  • 김진천
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.122-132
    • /
    • 1997
  • Nanostructured(NS) W-Cu composite powders of about 20~30 nm grain size were synthesized by mechanical alloying. The properties of NS W-Cu powder and its sintering behavior were investigated. It was shown from X-ray diffraction and TEM analysis that the supersaturated solid solution of Cu in W was not formed by the mechanical alloying of mixed elemental powders, but the mixture of W and Cu particles with nanosize grains, i.e., the nanocomposite powder was attained. Nanocomposite W-20wt%Cu and W-30wt%Cu powders milled for 100 h were sintered to the relative density more than 96% and 98%, respectively, by sintering at 110$0^{\circ}C$ for 1 h in $H_2$. Such a high sinterability was attributed to the high homogeneous mixing and ultra-fine structure of W and Cu phases as well as activated sintering effect by impurity metal introduced during milling.

  • PDF

Microstructure and Magnetic Properties of Nanostructured Fe-Co Alloy Powders Produced by Chemical Solution Mixing and Hydrogen Reduction Methods (화학용액혼합과 수소환원법으로 제조된 나노 구조 Fe-Co 합금분말의 미세구조 및 자성 특성)

  • 박현우;이백희;이규환;김영도
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.333-336
    • /
    • 2003
  • The purpose of this study is the fabrication of nano-sized Fe-Co alloy powders with soft magnetic properties by the slurry mixing and hydrogen reduction (SMHR) process. $FeCl_2$0 and $CoCl_2$ powders with 99.9% purities were used for synthesizing nanostructured Fe-Co alloy powder. Nano-sized Fe-Co alloy powders were successfully fabricated using SMHR, which was performed at 50$0^{\circ}C$ for 1 h in H$_2$ atmosphere. The fabricated Fe-Co alloy powders showed $\alpha$' phase (ordered body centered cubic) with the average particle size of 45 nm. The SMHR powder exhibited low coercivity force of 32.5 Oe and saturation magnetization of 214 emu/g.

Synthesis of Nanostructured Fe-Co Alloy Powders from Metal Salts

  • Lee, Young-Jung;Lee, Jea-Sung;Seo, Young-Ik;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.336-339
    • /
    • 2006
  • Magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as pain size (or particle size), internal strain and crystal structure. Thus, studies on the synthesis of nanostructured materials with controlled microstructure are necessary fur a significant improvement in magnetic properties. In the present work, nanostructured Fe-Co alloy powders with a grain size of 50 nm were successfully fabricated from the powder mixtures of (99.9% purity) $FeCl_2$ and $CoCl_2$ by chemical solution mixing and hydrogen reduction.

Micro Structures and Magnetic Properties of Nanostructured Fe-Co Alloy Powders Produced by Hydrogen Reduction Process (수소환원법으로 제조된 나노구조 Fe-Co 합금분말의 미세구조 및 자성특성)

  • An, Bong-Su;Lee, Baek-Hui;Lee, Gyu-Hwan;Kim, Yeong-Do
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.488-492
    • /
    • 2002
  • Magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as grain size, internal strain and crystal structure. Thus, studies on the synthesis of nanostructured materials with controlled microstructure are necessary for a significant improvement in magnetic properties. It is well known that when Fe-Co alloy undergoes ordering transformation, soft magnetic properties could be obtained. There are many reports that the magnetic properties of the materials can be changed with variation of grain size. In the present work, nanostructured Fe-50at.%Co alloy powder produced by hydrogen reduction process (HRP) starting with two oxide powder mixtures of $Fe_2O_3\;and\; Co_3O_4$. The mean grain size of the HRP powders was about 40 nm and coercivity of the: powders was about 43 Oe.

A Study On Synthesis of Nanostructured WC/Co composite Powders by Mechanochemical process (기계화학적방법에 의한 나노구조 WC/Co 복합 분말의 제조에 관한 연구)

  • 권대환;안인섭;하국현;김병기;김유영
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.167-173
    • /
    • 2002
  • A new approach to produce nanostructured WC/Co composite powders by a mechanochemical process was made to improve the mechanical properties of advanced hardmetals. Homogeneous spherical W-Co salt powders were made by spray drying of aqueous solution from ammonium metatungstate($(NH_4)_6(H_2W_{12}O_{40})\cdo4H_2O$,AMT) and cobalt nitrate hexahydrate (Co(NO$_3$)$_2$.6$H_2O$). spray dried W-Co salt powders were calcined for 1 hr at $700^{\circ}C$ in atmosphere of air. The oxide powder was mixed with carbon black by ball milling and this mixture was heated with various temperatures and times in $H_2$. The $WO_3/CoWO_4$ composite oxide powders were obtained by calcinations at $700^{\circ}C$. The primary particle size of W/Co composite oxide powders by SEM was 100 nm. The reduction/carburization time decreased with increasing temperatures and carbon additions. The average size of WC particle carburized at $800^{\circ}C$ by TEM was smaller than 50 nm.