DOI QR코드

DOI QR Code

Micro Structures and Magnetic Properties of Nanostructured Fe-Co Alloy Powders Produced by Hydrogen Reduction Process

수소환원법으로 제조된 나노구조 Fe-Co 합금분말의 미세구조 및 자성특성

  • An, Bong-Su (Division of Materials Science and Metallurgical Engineering, Hanyang University) ;
  • Lee, Baek-Hui (Division of Materials Science and Metallurgical Engineering, Hanyang University) ;
  • Lee, Gyu-Hwan ;
  • Kim, Yeong-Do (Division of Materials Science and Metallurgical Engineering, Hanyang University)
  • 안봉수 (한양대학교 재료공학부) ;
  • 이백희 (한양대학교 재료공학부) ;
  • 이규환 (한국과학기술연구원 미래기술연구부) ;
  • 김영도 (한양대학교 재료공학부)
  • Published : 2002.06.01

Abstract

Magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as grain size, internal strain and crystal structure. Thus, studies on the synthesis of nanostructured materials with controlled microstructure are necessary for a significant improvement in magnetic properties. It is well known that when Fe-Co alloy undergoes ordering transformation, soft magnetic properties could be obtained. There are many reports that the magnetic properties of the materials can be changed with variation of grain size. In the present work, nanostructured Fe-50at.%Co alloy powder produced by hydrogen reduction process (HRP) starting with two oxide powder mixtures of $Fe_2O_3\;and\; Co_3O_4$. The mean grain size of the HRP powders was about 40 nm and coercivity of the: powders was about 43 Oe.

Keywords

References

  1. R.W. Siegel and G.E. Fouger, Nanostruct. Master., 6, 205 (1995) https://doi.org/10.1016/0965-9773(95)00044-5
  2. C. Suryanarayana, J. Korean. Powder. Metall. Inst, 3, 233 (1996)
  3. R. Birringer, Master. Sci. Eng., A117, 33 (1989)
  4. J. Eastman, R.W. Siegel, Res. Dev., 31, 56 (1989)
  5. H. Gleiter, Prog. Master. Sci., 33, 223 (1989) https://doi.org/10.1016/0079-6425(89)90001-7
  6. D.L. Lesile-Pelecky, R.D. Rieke. Chem Mater., 8,1770 (1996) https://doi.org/10.1021/cm960077f
  7. G. Herzer, J Mag Mag Mater., 157/158, 133 (1996) https://doi.org/10.1016/0304-8853(95)01126-9
  8. G. Herzer, IEEE. Trans. Mag., 26, 1397 (1990) https://doi.org/10.1109/20.104389
  9. G. Herzer, J. Mag. Mag. Master., 112, 258 (1992) https://doi.org/10.1016/0304-8853(92)91168-S
  10. B.D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Publishing Company, USA, (1972)
  11. E.C. Stoner, E.P. Wohlfarth, Proc. Phys. Soc, 240, 599 (1948)
  12. N. Kurti, Selected Works of Louis Neel, Gordon and Break Science Publishers, New York, USA, (1988)
  13. G. Herzer, J. Mag. Mag. Master., 112, 258 (1992) https://doi.org/10.1016/0304-8853(92)91168-S
  14. R. Alben, J.J. Becker and M.C. Chi, J. Appl. Phys., 4, 1653 (1978) https://doi.org/10.1063/1.324881
  15. M. Muller, N. Mattern and U. Kuhn, J. Mag. Mag. Mater., 157/158, 209 (1996) https://doi.org/10.1016/0304-8853(95)01082-3
  16. J.S. Benjamin, Metall. Trans., 1, 2943 (1970)
  17. K.M. Lee, Ph. D. Thesis, Hanyang University. Seoul, Korea, (1991)
  18. C. Kuhrt, L. Schultz, J Appl Phys., 73, 6588 (1993) https://doi.org/10.1063/1.352573
  19. G.K. Williamson and W.H. Hall, Acta Metall.. 1, 22 (1953) https://doi.org/10.1016/0001-6160(53)90006-6
  20. B.D. Cullity, Elements of X-ray Diffraction (2nd ed.), Addison-Wesley. Pub. Co. Inc., 356 (1978)