• Title/Summary/Keyword: Nanosensor

Search Result 126, Processing Time 0.023 seconds

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).

Molecular Imaging in the Age of Genomic Medicine

  • Byun, Jong-Hoe
    • Genomics & Informatics
    • /
    • v.5 no.2
    • /
    • pp.46-55
    • /
    • 2007
  • The convergence of molecular and genetic disciplines with non-invasive imaging technologies has provided an opportunity for earlier detection of disease processes which begin with molecular and cellular abnormalities. This emerging field, known as molecular imaging, is a relatively new discipline that has been rapidly developed over the past decade. It endeavors to construct a visual representation, characterization, and quantification of biological processes at the molecular and cellular level within living organisms. One of the goals of molecular imaging is to translate our expanding knowledge of molecular biology and genomic sciences into good patient care. The practice of molecular imaging is still largely experimental, and only limited clinical success has been achieved. However, it is anticipated that molecular imaging will move increasingly out of the research laboratory and into the clinic over the next decade. Non-invasive in vivo molecular imaging makes use of nuclear, magnetic resonance, and in vivo optical imaging systems. Recently, an interest in Positron Emission Tomography (PET) has been revived, and along with optical imaging systems PET is assuming new, important roles in molecular genetic imaging studies. Current PET molecular imaging strategies mostly rely on the detection of probe accumulation directly related to the physiology or the level of reporter gene expression. PET imaging of both endogenous and exogenous gene expression can be achieved in animals using reporter constructs and radio-labeled probes. As increasing numbers of genetic markers become available for imaging targets, it is anticipated that a better understanding of genomics will contribute to the advancement of the molecular genetic imaging field. In this report, the principles of non-invasive molecular genetic imaging, its applications and future directions are discussed.

Screening of Endogenous Maize (Zea mays) Substances Enhancing Auxin-induced Inward Curvature in Coleoptilar Slits (안쪽으로 굽어지는 자엽초 박편의 옥신 반응을 촉진하는 옥수수(Zea mays) 내생물질의 탐색)

  • Park, Woong-June
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.859-865
    • /
    • 2006
  • When thin slits (e.g., $1mm{\times}10mm$) of maize (Zea mays) coleoptiles were floated on a buffer, they spontaneously curved outward because of unbalanced tissue tension between inner and outer faces. Exogenously applied auxin induced inward curvature of the thin strip of the maize coleoptile in a dose-dependent manner. This bioassay system was used to screen endogenous substances that work together with auxin. In methanol extract of maize coleoptiles including the leaves inside, Active fractions that promote the auxin-induced inward curvature of maize coleoptile slices were found. The curvature-enhancing activity of the extract was not related to energy supply. The active substances were adsorbed to $C_{18}$ cartridges even at pH 10 and eluted in two fractions by 50% and 80% methanol. These substances were named as Curvature-Enhancing Factor-1 (CEF-1) and Curvature-Enhancing Factor-2 (CEF-2), respectively. The CEF-2 was resolved on a reversed phase $C_{18}$ column by HPLC.

Study of the Nitrogen-Beam Irradiation Effects on ALD-ZnO Films (ALD로 성장된 ZnO박막에 대한 질소이온 조사효과)

  • Kim, H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • ZnO, a wurtzite lattice structure, has attracted much attention as a promising material for light-emitting diodes (LEDs) due to highly efficient UV emission resulting from its large band gap of 3.37 eV, large exciton binding energy of 60 meV, and low power threshold for optical pumping at room temperature. For the realization of LEDs, both n-type ZnO and p-type ZnO are required. Now, n-type ZnO for practical applications is available; however, p-type ZnO still has many drawbacks. In this study, ZnO films were grown on glass substrates by using atomic layer deposition (ALD) and the ZnO films were irradiated by nitrogen ion beams (20 keV, $10^{13}{\sim}10^{15}ions/cm^2$). The effects of nitrogen-beam irradiation on the ZnO structure as well as the electrical property were investigated by using fieldemission scanning electron microscopy (FESEM) and Hall-effect measurement.

Inhibition of HIV-1 Replication in CD4+ Peripheral Blood Lymphocytes by Intracellular Expression of RNA Aptamer (RNA aptamer 발현을 통한 CD4+ peripheral blood lymphocytes에서의 인간 면역결핍 바이러스의 증식 억제)

  • Lee, Seong-Uk
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.235-241
    • /
    • 2003
  • We have previously demonstrated that intracellular expression of an RNA aptamer termed RRE40, which was selected in vitro to bind HIV Rev 10-fold much tighter than wild-type RRE, efficiently protected human CD4+ T cell line, CEM, from HIV-1. In this study, to evaluate the efficacy of the RRE40 RNA in clinical settings, polyclonal CD4+ peripheral blood lymphocytes (PBLs) were transduced with retroviral vectors expressing RRE40 decoy RNA and then challenged with clinical isolates of HIV-1. In contrast to the control cells transduced with vectors expressing control tRNA, intracellular expression of RRE40 RNA more effectively inhibited HIV-1 replication in CD4+ PBLs. However, transient and diminished inhibition, rather than complete inhibition, of HIV-1 replication in PBLs expressing RRE40 decoys have been observed. These results suggest that RRE40 decoy RNA would be useful to inhibit HIV-1 replication in cells. However, development of more efficient gene transfer protocols and/or more effective decoy RNAs would be needed to apply RNA decoy to modulate HIV-1 patient.

Micro-Spot Atmospheric Pressure Plasma Production for the Biomedical Applications

  • Hirata, T.;Tsutsui, C.;Yokoi, Y.;Sakatani, Y.;Mori, A.;Horii, A.;Yamamoto, T.;Taguchi, A.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.44-45
    • /
    • 2010
  • We are currently conducting studies on culturing and biocompatibility assessment of various cells such as neural stem cells and induced pluripotent stem cells(IPS cells) on carbon nanotube (CNT), on nerve regeneration electrodes, and on silicon wafers with a focus on developing nerve integrated CNT based bio devices for interfacing with living organisms, in order to develop brain-machine interfaces (BMI). In addition, we are carried out the chemical modification of carbon nanotube (mainly SWCNTs)-based bio-nanosensors by the plasma ion irradiation (plasma activation) method, and provide a characteristic evaluation of a bio-nanosensor using bovine serum albumin (BSA)/anti-BSA binding and oligonucleotide hybridization. On the other hand, the researches in the case of "novel plasma" have been widely conducted in the fields of chemistry, solid physics, and nanomaterial science. From the above-mentioned background, we are conducting basic experiments on direct irradiation of body tissues and cells using a micro-spot atmospheric pressure plasma source. The device is a coaxial structure having a tungsten wire installed inside a glass capillary, and a grounded ring electrode wrapped on the outside. The conditions of plasma generation are as follows: applied voltage: 5-9 kV, frequency: 1-3 kHz, helium (He) gas flow: 1-1.5 L/min, and plasma irradiation time: 1-300 sec. The experiment was conducted by preparing a culture medium containing mouse fibroblasts (NIH3T3) on a culture dish. A culture dish irradiated with plasma was introduced into a $CO_2$-incubator. The small animals used in the experiment involving plasma irradiation into living tissue were rat, rabbit, and pick and are deeply anesthetized with the gas anesthesia. According to the dependency of cell numbers against the plasma irradiation time, when only He gas was flowed, the growth of cells was inhibited as the floatation of cells caused by gas agitation inside the culture was promoted. On the other hand, there was no floatation of cells and healthy growth was observed when plasma was irradiated. Furthermore, in an experiment testing the effects of plasma irradiation on rats that were artificially given burn wounds, no evidence of electric shock injuries was found in the irradiated areas. In fact, the observed evidence of healing and improvements of the burn wounds suggested the presence of healing effects due to the growth factors in the tissues. Therefore, it appears that the interaction due to ion/radicalcollisions causes a substantial effect on the proliferation of growth factors such as epidermal growth factor (EGF), nerve growth factor (NGF), and transforming growth factor (TGF) that are present in the cells.

  • PDF