• 제목/요약/키워드: Nanoporous Powder

검색결과 14건 처리시간 0.017초

상압 건조 공정을 이용한 다공성 세라믹스 구조체 내부에 소수성 실리카 에어로겔의 합성 (The Synthesis of Hydrophobic Silica Aerogel in the Macroporous Ceramic Structure by Ambient Drying Process)

  • 홍선욱;송인혁;박영조;윤희숙;한유동;황기영;이영우
    • 한국분말재료학회지
    • /
    • 제18권3호
    • /
    • pp.269-276
    • /
    • 2011
  • The synthesis behavior of nanoporous silica aerogel in the macroporous ceramic structure was observed using TEOS as a source material and glycerol as a dry control chemical additive (DCCA). Silica aerogel in the macroporous ceramic structure was synthesized via sono-gel process using hexamethyldiazane (HMDS) as a modification agent and n-hexane as a main solvent. The wet gel with a modified surface was dried at $105^{\circ}C$ under ambient pressure. The addition of glycerol appears to give the wet gel a more homogeneous microstructure. However, glycerol also retarded the rate of surface modification and solvent exchange. Silica aerogel completely filled the macroporous ceramic structure without defect in the condition of surface modification (20% HMDS/nhexane at 36hr).

Adsorption of ammonia using mesoporous alumina prepared by a templating method

  • Yeom, Changjoo;Kim, Younghun
    • Environmental Engineering Research
    • /
    • 제22권4호
    • /
    • pp.401-406
    • /
    • 2017
  • Ammonia, $NH_3$, is a key chemical widely used in chemical industries and a toxic pollutant that impacts human health. Thus, there is a need for the development of effective adsorbents with high uptake capacities to adsorb $NH_3$. An adsorbent with a high surface area and a small pore size is generally preferred in order to have a high capacity for the removal of $NH_3$. The use inorganic nanoporous materials as gas adsorbents has increased substantially and emerged as an alternative to zeolite and activated carbon. Herein, mesoporous alumina (MA) was prepared and used as an $NH_3$ adsorbent. MA showed good pore properties such as a uniform pore size and interlinked pore system, when compared to commercial adsorbents (activated carbon, zeolite, and silica powder). MA has free hydroxyl groups, serving as useful adsorption sites for $NH_3$. In an adsorption isotherm test, MA exhibited 4.7-6.5 times higher uptake capacities for $NH_3$ than commercial adsorbents. Although the larger surface areas of adsorbents are important features of ideal adsorbents, a regular and interlinked adsorbent pore system was found to be a more crucial factor to adsorb $NH_3$.

나노다공성 실리카 에어로겔 과립의 간단 제조 (Facile Preparation of Nanoporous Silica Aerogel Granules)

  • 김남현;황하수;박인
    • 공업화학
    • /
    • 제22권2호
    • /
    • pp.209-213
    • /
    • 2011
  • 낮은 열전도율, 높은 비표면적과 기공률을 갖는 소수성 실리카 에어로겔 과립을, 저가의 물유리를 실리카 전구체로 사용하고 상압건조하여 제조하였다. 별도의 과립화 첨가제 및 과립화 기구를 사용하지 않고, 산도(~5)를 변화시켜 모노리스 형태의 습윤겔을 먼저 제조하여, 용매치환/소수성화 동시공정과 상압건조공정 과정에서 습윤겔이 깨져 0.5~2 mm 크기의 과립형태 실리카 에어로겔을 제조하였다. 제조된 실리카 에어로겔 과립은 비표면적, 평균기공크기, 기공부피가 각각 $593m^2/g$, 34.9 nm, $4.4cm^3/g$으로 실리카 에어로겔 분말과 거의 유사한 다공도를 가지고 있으며, 열전도율도 $20^{\circ}C$에서 19.8 mW/mK으로 나타나 같은 조건에서 제조된 실리카 에어로겔 분말과 거의 같은 단열성을 나타내었다.

용액 플라즈마를 이용한 콜로이드 및 나노 구조 MnO2의 친환경 합성 (Green Synthesis of Colloidal and Nanostructured MnO2 by Solution Plasma Process)

  • 김혜민
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.315-322
    • /
    • 2023
  • In the present work, we address the new route for the green synthesis of manganese dioxide (MnO2) by an innovative method named the solution plasma process (SPP). The reaction mechanism of both colloidal and nanostructured MnO2 was investigated. Firstly, colloidal MnO2 was synthesized by plasma discharging in KMnO4 aqueous solution without any additives such as reducing agents, acids, or base chemicals. As a function of the discharge time, the purple color solution of MnO4- (oxidation state +7) was changed to the brown color of MnO2 (oxidation state +4) and then light yellow of Mn2+ (oxidation state +2). Based on the UV-vis analysis we found the optimal discharging time for the synthesis of stable colloidal MnO2 and also reaction mechanism was verified by optical emission spectroscopy (OES) analysis. Secondly, MnO2 nanoparticles were synthesized by SPP with a small amount of reducing sugar. The precipitation of brown color was observed after 8 min of plasma discharge and then completely separated into colorless solution and precipitation. It was confirmed layered type of nanoporous birnessite-MnO2 by X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), and electron microscopes. The most important merits of this approach are environmentally friendly process within a short time compared to the conventional method. Moreover, the morphology and the microstructure could be controllable by discharge conditions for the appropriate potential applications, such as secondary batteries, supercapacitors, adsorbents, and catalysts.