• 제목/요약/키워드: Nanocrystalline alloy

검색결과 129건 처리시간 0.03초

$Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ 초미세결정립합금의 자기특성 (Magnetic Propertes of $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ Nanocrystalline Alloys)

  • 조용수;김만중;천정남;김택기;박우식;김윤배
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.880-894
    • /
    • 1995
  • B의 함유량을 6 at% 고정하고 Nd함유량을 3~5 at%로 변화시킨 $\alpha$-Fe기 Nd-Fe-B 합금의 자기특성이 조사 되었다. 급속응고법으로 제조된 $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ 비정질합금은 열처리에 의하여 초미세결정립으로 결정화하며, Nd의 함유량에 따라 잔류자화 및 보자력이 변한다. x=3의 경우 최적열처리조건에서 $\alpha$-Fe(Co) 부피분율의 증가로 잔류자 화는 증가하나, 보자력은 감소한다. 그러나 Nd 함유량의 증가는 $Nd_{2}{(Fe,\;Co)}_{14}B$ 부피분율의 증가로 인하여 잔류자화는 감소하나 보자력은 향상된다. $640^{\circ}C$, 10 min 열처리조건에서 $Nd_{5}{(Fe_{0.9}Co_{0.1})}_{85}B_{6}Nb_{3}Cu_{1}$의 결정립크기는 약 20 nm이며, 잔류자화, 보자력 및 최대에너지적 은 각각 1.35 T, 219 kA/m (2.75 kOe) 및 $129\;kJ/m^{3}$ (16.2 MGOe)으로 가장 우수하다.

  • PDF

전착된 나노 결정질 니켈-철 합금의 미세구조 및 물성에 대한 철의 영향 (Effect of Iron Co-deposited Nickel on the Microstructures and Properties of Electroplated Nanocrystalline Nickel-iron Alloys)

  • 변명환;조진우;송용승
    • 한국표면공학회지
    • /
    • 제38권4호
    • /
    • pp.156-162
    • /
    • 2005
  • Nickel-iron nanocrystalline alloys with different compositions and grain sizes were fabricated by electro-plating for MEMS devices. The iron content of the deposits was changed by varying the nickel/iron ion ratio in the electrolyte. X-ray diffraction (XRD) analysis was applied for measuring the strength of the texture and grain size of the deposits. The nickel/iron atom ratio of the deposits was analyzed by EDS. The hardness of the alloys was evaluated by Vickers hardness indenter. The internal stress of the deposits was measured by Thin Film Stress Measurement using Stoney's formula. Surface morphology and roughness were investigated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The results of this study revealed that at a grain size of approximately $17\~24$nm the hardness, internal stress and roughness depend strongly on the iron content. With increasing the iron content, the hardness and internal stress of the deposits increased. An excellent correlation between the increase in the internal stress and the loss of (200) texture was found.

전주도금으로 제조된 Ni/Invar 바이메탈의 미세조직과 집합조직 (Microstructures and Textures of Electrodeposited Ni/Invar Bimetal)

  • 강지훈;서정호;박용범
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.420-426
    • /
    • 2008
  • By using electrodeposition, we developed a new method to produce Ni/Invar bimetal sheets, which have been used for the present study to investigate the texture evolution during annealing. The grains of electrodeposited Ni were columnar, while those of electrodeposited Fe-Ni alloy were nanocrystalline. These different parts of the bimetal underwent different evolution of textures and microstructures during annealing. In the nanocrystalline Invar, the as-deposited textures were of fiber-type characterized by strong <100>//ND and weak <111>//ND components, and the occurrence of grain growth resulted in the strong development of the <111>//ND fiber texture with the minor <100> // ND components. On the other hand, in the columnar-structured Ni part, the as-deposited <110>//ND fiber texture transformed to the <112>//ND fiber texture due to recrystallization occurring above $550^{\circ}C$. The development of microtextures which took place during annealing in the Ni/Invar interfacial regions was investigated by using the OIM analysis, and discussed in terms of the effect of atomic diffusion across the interfaces.

Magnetoimpedance Effect in Nanocrystalline Fe91.5-xZr7BxCu1Al0.5 (x=2, 4, 6, 8) Alloys

  • Lee, Heebok;Kim, Yong-Kook;Kim, Taik-Kee;Kim, Chong-Oh;Yu, Seong-Cho
    • Journal of Magnetics
    • /
    • 제7권1호
    • /
    • pp.21-23
    • /
    • 2002
  • The magnetoimpedance of $Fe_{91.5-x}Zr_7B_xCu_1Al_{0.5}$alloys has been measured to investigate the influence of structural changes in the nanocrystallization process after thermal treatment. Annealing was performed at temperatures of $350^\circ{C}$, $450^\circ{C}$, and $550^\circ{C}$ for 1 hour in a vacuum. Ultra soft magnetic behavior was observed in the samples annealed at $550^\circ{C}$. The magnetoimpedance ratio and the longitudinal permeability ratio coincided with the softness of the magnetic properties of the thermally treated samples.

Synthesis of Nanostructured Fe-Co Alloy Powders from Metal Salts

  • Lee, Young-Jung;Lee, Jea-Sung;Seo, Young-Ik;Kim, Young-Do
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.336-339
    • /
    • 2006
  • Magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as pain size (or particle size), internal strain and crystal structure. Thus, studies on the synthesis of nanostructured materials with controlled microstructure are necessary fur a significant improvement in magnetic properties. In the present work, nanostructured Fe-Co alloy powders with a grain size of 50 nm were successfully fabricated from the powder mixtures of (99.9% purity) $FeCl_2$ and $CoCl_2$ by chemical solution mixing and hydrogen reduction.

Mechanical Alloying Effect in Immiscible Cu-Based Alloy Systems.

  • Lee, Chung-Hyo;Lee, Seong-Hee;Kim, Ji-Soon;Kwon, Young-Soon
    • 한국분말재료학회지
    • /
    • 제10권3호
    • /
    • pp.164-167
    • /
    • 2003
  • The mechanical alloying effect has been studied on the three Cu-based alloy systems with a positive heat of mixing. The extended bcc solid solution has been formed in the Cu-V system and an amorphous phase in the Cu-Ta system. However, it is round that a mixture of nanocrystalline Cu and Mo Is formed in the Cu-Mo system. The neutron diffraction has been employed at a main tool to characterize the detailed amorphization process. The formation of an amorphous phase in Cu-Ta system can be understood by assuming that the smaller Cu atoms preferentially enter into the bcc Ta lattice during ball milling.

Densification Behavior of Fe-Ni Alloy Nanoparticles

  • Kim, Sang-Phil;Lee, Woo-Seok;Lee, Jae-Wook;Choi, Chul-Jin
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.531-532
    • /
    • 2006
  • The effects of compaction pressure and sintering temperature on the densification of Fe-40wt%Ni alloy nanoparticles were analyzed. The Fe-Ni nanoparticles were fabricated by an arc-discharge method and then, compacted at three different pressures and sintered at 550 to $900\;^{\circ}C$. Densification was completed at temperature as low as $600\;^{\circ}C$ and high-pressure compaction was found to enhance densification. Densification behaviors and microstructure developments have been investigated through density measurements, electron microscopies, and hardness measurements.

  • PDF

EFFECT OF Zr AND Nb ON THE ELECTRICAL AND MAGNETIC PROPERTIES OF THE Fe-Zr-Nb-B-Cu ALLOY

  • JUNGHYUN NOH;SEUNGYEON PARK;HAEJIN HWANG;KYOUNGMOOK LIM
    • Archives of Metallurgy and Materials
    • /
    • 제64권3호
    • /
    • pp.879-882
    • /
    • 2019
  • The present study, aims to investigate the effect of minor Zr and Nb alloying on soft magnetic and electrical properties of Fe86(ZrxNb1-x)7B6Cu1 (x = 1, 0.75, 0.5, 0.25) alloys. The investigated alloys were prepared through the melt spinning process. Within the examined compositional range (Nb up to 5.25at%, respectively), the soft magnetic properties and electrical resistivity of the alloys continuously increase with increasing Nb content. However increasing the Nb content further decreases such properties. We could confirm the influence of ratio of Zr and Nb on grain growth and crystallization fraction during crystallization by using the soft magnetic properties and electrical properties.

극박형 Fe-Al-Nb-B-Cu계 초미세결정합금의 자기적 특성 (The Magnetic Properties of Ultrathin Fe-Al-Nb-B-Cu Nanocrystalline Alloys)

  • 박진영;서수정;김광윤;노태환
    • 한국자기학회지
    • /
    • 제6권4호
    • /
    • pp.211-217
    • /
    • 1996
  • Fe-B-Nb-Cu계 초미세결정합금의 고주파수 대역에서의 연자기 특성을 개선하기 위하여, 이 합금에 대한 Al 첨가효과 및 적정 Al 함유합금을 $10\;\mu\textrm{m}$ 이하의 두께를 가진 극박형으로 만들었을 때의 자기적 특성이 조사되었다. 그 결과 $Fe_{78}Al_{4}Nb_{5}B_{12}Cu_{1}$ 조성합금의 경우에 100 kHz 이상의 고주파 영역에서 높은 실효투자율과 낮은 자심손실 값을 나타내었다. 또 이 합금을 두께 $10\;\mu\textrm{m}$ 이하로 극박화한 경우 1 MHz영역까지의 실효투자율 및 자심손실 특성이 크게 개선되었다. 즉, 두께 $8\;\mu\textrm{m}$$Fe_{78}Al_{4}Nb_{5}B_{12}Cu_{1}$ 합금의 1 MHz에서의 실효 투자율은 5,000이었으며, 자심손실은 1 MHz, 0.2 T에서 1.4 kW/kg의 값을 보였다. 이러한 우수한 연자기 특성은 Al 첨가에 의해 자구구조의 변화 및 10 nm 이하의 보다 미세한 $\alpha-Fe$상 생성등에 기인하는 것으로 해석되었다.

  • PDF

Hydrogenation and Electrochemical Characteristics of Amorphous-nanostructured Mg-based Alloys

  • Gebert, A.;Khorkounov, B.;Schultz, L.
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.327-335
    • /
    • 2006
  • In the development of new hydrogen absorbing materials for a next generation of metal hydride electrodes for rechargeable batteries, metastable Mg-Ni-based compounds find currently special attention. Amor phous-nanocrystalline $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ alloys were produced by mechanical alloying and melt-spinning and characterized by means of XRD, TEM and DSC. On basis of mechanically alloyed Mg-Ni-Y powders, complex hydride electrodes were fabricated and their electrochemical behaviour in 6M KOH (pH=14,8) was investigated. The electrodes made from $Mg_{63}Ni_{30}Y_7$ powders, which were prepared under use of a SPEX shaker mill, with a major fraction of nanocrystalline phase reveal a higher electrochemical activity far hydrogen reduction and a higher maximum discharge capacity (247 mAh/g) than the electrodes from alloy powder with predominantly amorphous microstructure (216 mAh/g) obtained when using a Retsch planetary ball mill at low temperatures. Those discharge capacities are higher that those fur nanocrystalline $Mg_2Ni$ electrodes. However, the cyclic stability of those alloy powder electrodes was low. Therefore, fundamental stability studies were performed on $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ ribbon samples in the as-quenched state and after cathodic hydrogen charging by means of anodic and cathodic polarisation measurements. Gradual oxidation and dissolution of nickel governs the anodic behaviour before a passive state is attained. A stabilizing effect of higher fractions of yttrium in the alloy on the passivation was detected. During the cathodic hydrogen charging process the alloys exhibit a change in the surface state chemistry, i.e. an enrichment of nickel-species, causing preferential oxidation and dissolution during subsequent anodization. The effect of chemical pre-treatments in 1% HF and in $10\;mg/l\;YCl_3/1%\;H_2O_2$ solution on the surface degradation processes was investigated. A HF treatment can improve their anodic passivation behavior by inhibiting a preferential nickel oxidation-dissolution at low polarisation, whereas a $YCl_3/H_2O_2$ treatment has the opposite effect. Both pre-treatment methods lead to an enhancement of cathodically induced surface degradation processes.