• 제목/요약/키워드: Nanocrystal

검색결과 185건 처리시간 0.02초

Biological Toxicity Changes of Mercaptoacetic Acid and Mercaptopropionic Acid Upon Coordination onto ZnS:Mn Nanocrystal

  • Kong, Hoon-Young;Hwang, Cheong-Soo;Byun, Jong-Hoe
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.657-662
    • /
    • 2012
  • Mercaptoacetic acid (MAA) and mercaptopropionic acid (MPA) capped ZnS:Mn nanocrystals were synthesized and their physical characteristics were examined by XRD, HR-TEM, EDXS, and FT-IR spectroscopy. The optical properties of the MPA capped ZnS:Mn nanocrystals dispersed in aqueous solution were also measured by UV/Vis and solution photoluminescence (PL) spectra, which showed a broad emission peak around 598 nm (orange light emissions) with calculated relative PL efficiency of 5.2%. Comparative toxicity evaluation of the uncoordinated ligands, MAA and MPA, with the corresponding ZnS:Mn nanocrystals revealed that the original ligands significantly suppressed the growth of wild type E. coli whereas the ligandcapped nanocrystals did not show significant toxic effects. The reduced cytotoxicity of the conjugated ZnS:Mn nanocrystals was also observed in NIH/3T3 mouse embryonic fibroblasts. These results imply that potential toxicities of the capping ligands can be neutralized on ZnS:Mn surface.

실리콘산화막의 광루미니센스 온도의존성에 관한 연구 (Temperature Dependence of Photoluminescence in $SiO_2$)

  • 이재희
    • 한국진공학회지
    • /
    • 제10권2호
    • /
    • pp.247-251
    • /
    • 2001
  • 실리콘산화막에 $Si^+$이온을 주입하여 열처리를 한 후 상온에서 8K까지 온도를 변화시키며 PL을 측정하였다. 상온에서 50~80K까지는 PL intensity가 전체적으로 증가하였으며 50K 이하에서는 감소하였다. PL intensity가 증가하는 동안 peaks는 blue-shift가 일어났다. PL spectrum에서 peak를 보이는 파장에서 PL의 온도의존성을 측정하였다. 첫 번째 peak가 온도변화에 가장 민감하며 크기가 작은 peak일수록 온도의 영향을 적게 받는다. PL peak의 온도의존성을 분석하였다. 상온에서 50K 범위에서 PL intensity 대 1000/T그림에서 온도역수의 3차 함수로 fitting할 수 있었다. 온도가 내려갈수록 PL intensity가 증가하는 것을 nanocrystal 보다도 O위주 결함(Si-O-O)이나 Si위주 결함(Si-Si-O)들의 quantum size effect로 설명할 수 있었다.

  • PDF

초음파 나노표면개질을 적용한 궤도차량용 토션바 제조 및 재제조용 표면 개질기술에 관한 연구 (UNSM Surface Technology for Manufacturing and Remanufacturing Torsion Bars for Crawler Vehicles)

  • 서창민;편영식;조인호;백운봉
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.80-85
    • /
    • 2011
  • The Ultrasonic Nanocrystal Surface Modification (UNSM) technology improves the fatigue life of a torsion bar by inducing compressive residual stress on the surface layer. The UNSM is applied to replace the presetting method and shot peening technology. The torsion bar must be changed periodically because of a lack of durability and a phenomenon related to the stress relaxation. The torsion fatigue test specimens were made of DIN17221 material, and the results showed that the fatigue life was 5 times more than under durability test conditions. A comparison test between the commercial vehicles' presetting method and shot peened torsion bar and the UNSM torsion bar showed that the UNSM could replace the presetting method and shot peening.

Photoluminescence of CuInS2/(Cd,Zn)S Nanocrystals as a Function of Shell Composition

  • Kim, Young-Kuk;Ahn, Si-Hyun;Choi, Gyu-Chae;Chung, Kook-Chae;Cho, Young-Sang;Choi, Chul-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권5호
    • /
    • pp.218-221
    • /
    • 2011
  • We modified the optical properties of the $CuInS_2$ nanocrystal (NC) by alloying. Nanocrystals (NCs) with alloyed cores were synthesized by refluxing the as-synthesized $CuInS_2$ NCs with a mixture of cadmium acetate, zinc acetate and palmitic acid. The shift in emission wavelength of the NCs after shell layer formation was minimized by alloying. The photoluminescence (PL) spectra showed significant reduction of emission intensity. A detailed study on the emission process of NCs implies that the formation of shell layers with small lattice mismatch minimized the mismatch strain generated from the shell layers in contrast to core alloyed NCs. In particular, time-resolved PL spectra of the NCs showed a significant increase in the lifetime of excited carriers by modifying the band alignment of the NCs by modifying the shell composition.

Hybrid Solar Cells with Polymer/Fullerene Bulk Heterojunction Layers Containing in-situ Synthesized CdS Nanocrystals

  • Kwak, Eunjoo;Woo, Sungho;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • 제2권4호
    • /
    • pp.152-156
    • /
    • 2014
  • We report hybrid solar cells fabricated with polymer/fullerene bulk heterojunction layers that contain inorganic nanocrystals synthesized by in-situ reaction in the presence of polymer chains. The inorganic (cadmium sulfide) nanocrystal ($CdS_{NC}$) was generated by the reaction of cadmium acetate and sulfur by varying the reaction time up to 30 min. The synthesized $CdS_{NC}$ showed a rectangular flake shape, while the size of $CdS_{NC}$ reached ca. 150 nm when the reaction time was 10 min. The performance of hybrid solar cells with $CdS_{NC}$ synthesized for 10 min was better than that of a control device, whereas poor performances were measured for other hybrid solar cells with $CdS_{NC}$ synthesized for more than 10 min.

UNSM 위한 20 kHz급 초음파 장치 개발 (Development of 20-kHz Ultrasonic Equipment for UNSM)

  • 신현근;김현세;임의수
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.530-534
    • /
    • 2015
  • Ultrasonic nanocrystal surface modification (UNSM) is an example of a nanoscale-surface modification that has become noticeable because of its effects on the mechanical improvement of metallic materials. UNSM equipment needs to be both utilized and improved. The equipment is based on an ultrasonic waveguide whose role is to strike surfaces of metallic materials to achieve nanoscale deformation. In this paper, we introduce the development of one kind of UNSM equipment. Using piezoelectric elements, we repeatedly design and fabricate a 20-kHz ultrasonic waveguide. With respect to the composition of the equipment, the waveguide is automatically transferred by two axial stages automatically. In addition, a static force is constantly applied by pneumatic devices. We perform an experiment to verify the feasibility of the equipment.