• Title/Summary/Keyword: Nanocomposite hydrogels

Search Result 8, Processing Time 0.022 seconds

Temperature and pH-Responsive Release Behavior of PVA/PAAc/PNIPAAm/MWCNTs Nanocomposite Hydrogels

  • Jung, Gowun;Yun, Jumi;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.173-177
    • /
    • 2012
  • A drug delivery system (DDS) was prepared with a temperature and pH-responsive hydrogel. Poly(vinyl alcohol) (PVA)/poly(acrylic acid) (PAAc)/poly(N-isopropylacrylamide) (PNIPAAm)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by radical polymerization for the temperature and pH-responsive hydrogels. MWCNTs were employed to improve both the thermal conductivity and mechanical properties of the PVA/PAAc/PNIPAAm/MWCNT nanocomposite hydrogels. Various amounts of MWCNTs (0, 0.5, 1 and 3 wt%) were added to the nanocomposite hydrogels. PVA/PAAc/PNIPAAm/MWCNT nanocomposite hydrogels were characterized with a scanning electron microscope. The mechanical properties were measured with a universal testing machine. Swelling and releasing properties of nanocomposite hydrogels were investigated at various temperatures and pHs. Temperature and pH-responsive release behavior was found to be dependent on the content of MWCNTs in nanocomposite hydrogels.

Synthesis, Characterization, and Antibacterial Applications of Novel Copolymeric Silver Nanocomposite Hydrogels

  • Kim, Yong-Hyun;Babu, V. Ramesh;Thangadurai, Daniel T.;Rao, K.S.V. krishna;Cha, Hyeong-Rae;Kim, Chang-Dae;Joo, Woo-Hong;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.553-558
    • /
    • 2011
  • Copolymeric silver nanocomposite hydrogels were synthesized by using acryloyl phenylalanine (APA), N'-isopropylacrylamide (NIPAM) and crosslinked by N,N-methylene bisacrylamide (MBA) via radical redox polymerization. Present study allows entrapping silver nanoparticles into hydrogel networks. UV-visible spectroscopy and X-ray diffraction (XRD) studies confirmed the formation of silver nanoparticles in hydrogel matrix. 11% of weight loss difference between hydrogel and silver nanocomposite hydrogel is clearly indicates the formation and silver nanoparticles by thermo-gravimetrical analysis. The order of swelling capacity values of hydrogels and silver nanocmposite hydrogels were found to be in the order of placebo copolymeric hydrogel >Ag-copolymeric silver nanocomposite hydrogels. The particle size of silver nanoparticles was analysed and are in the range of 5 - 10 nm which has been confirmed by transmission electron microscopy (TEM) as well as particle size analysis. The silver nanocomposite hydrogel has shown very good antibacterial activity on gram-positive and gram-negative bacteriocides.

Fabrication of Amino Acid Based Silver Nanocomposite Hydrogels from PVA- Poly(Acrylamide-co-Acryloyl phenylalanine) and Their Antimicrobial Studies

  • Cha, Hyeong-Rae;Babu, V. Ramesh;Rao, K.S.V. Krishna;Kim, Yong-Hyun;Mei, Surong;Joo, Woo-Hong;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3191-3195
    • /
    • 2012
  • New silver nanoparticle (AgNP)-loaded amino acid based hydrogels were synthesized successfully from poly (vinyl alcohol) (PVA) and poly(acryl amide-co-acryloyl phenyl alanine) (PAA) by redox polymerization. The formation of AgNP in hydrogels was confirmed by using a UV-Vis spectrophotometer and XRD. The structure and morphology of silver nanocomposite hydrogels were studied by using a scanning electron microscopy (SEM), which demonstrated scattered nanoparticles, ca. 10-20 nm. Thermogravimetric analysis revealed large differences of weight loss (i.e., 48%) between the prestine hydrogel and silver nanocomposite. The antibacterial studies of AgNP-loaded PAA (Ag-PAA) hydrogels was evaluated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. These Ag-PAA hydrogels showed significant activities against all the test bacteria. Newly developed hydrogels could be used for medical applications, such as artificial burn dressings.

Electro-responsive Transdermal Drug Release of MWCNT/PVA Nanocomposite Hydrogels

  • Kim, Yeon-Yi;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.211-215
    • /
    • 2010
  • Multi-walled carbon nanotube (MWCNT)/poly(vinyl alcohol) (PVA) nanocomposite hydrogels were prepared by freezingthawing method for the electro-responsive transdermal drug delivery. MWCNTs were used as the functional ingredient to improve both mechanical and electrical properties of MWCNT/PVA nanocomposite hydrogels. The morphology of nanocomposites revealed the uniform distribution of MWCNTs and the good interfacial contact. The compression moduli of hydrogel matrices increased greatly from 40 to 1500 kPa by forming MWCNT/PVA nanocomposites. The swelling ratio of MWCNT/PVA nanocomposites decreased as the content of MWCNTs increased under no electric voltage applied. However, the swelling ratio of MWCNT/PVA nanocomposites increased as the content of MWCNTs increased under electric voltage applied and the applied electric voltage increased. The drug was released in the electro-responsive manner through the skin due to the electro-sensitive swelling characteristics of MWCNT/PVA nanocomposite hydrogels.

Dual Responsive Pectin Hydrogels and Their Silver Nanocomposites: Swelling Studies, Controlled Drug Delivery and Antimicrobial Applications

  • Reddy, P. Rama Subba;Eswaramma, S.;Krishna Rao, K.S.V.;Lee, Yong Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2391-2399
    • /
    • 2014
  • Novel dual responsive pectin hydrogels composed from poly(acrylamidoglycolic acid-co-vinylcaprolactam)/Pectin (PAV-PC) and also PAV-PC hydrogels are used as templates for the production of silver nanoparticles. 5-Fluorouracil is an anticancer drug and has been loaded in situ into PAV-PC hydrogels. Structure and morphology characterization of PAV-PC hydrogels were investigated by fourier transform infrared spectroscopy, differential scanning calorimetry, thermo gravimetric analysis, X-ray diffraction studies, scanning electron microscopy and transmission electron microscopy. The results revealed a molecular level dispersion of the drug in PAV-PC hydrogels. In vitro release of 5-fluorouracil from the PAV-PC hydrogels has been carried out in GIT fluids as well as in various temperatures. 5-Fluorouracil released from PAV-PC hydrogels was 50% at pH 1.2, and 85% at pH 7.4 within 24 h. The release profile was characterized with PAV-PC hydrogels and initial burst effect was significantly reduced in two buffer media (1.2 and 7.4), followed by a continuous and controlled release phase, the drug release mechanism from polymer was due to Fickian diffusion. In situ fabrication of silver nanoparticles inside the hydrogel network via the reduction of sodium borohydrate by PAV-PC chains led to hydrogel nanocomposites. The diameter of the nanocomposites was about 50-100 nm, suitable for uptake within the gastrointestinal tract due to their nanosize range and mucoadhesive properties. These nanocomposite PAV-PC hydrogels showed strong antimicrobial activity towards Bacillus subtilis (G+ve) and Escherichia coli (G-ve).

Clay/Acrylamide Hydrogels Having Fucoidan (푸코이단을 함유한 Clay/아크릴아미드 하이드로젤)

  • Hwang, Sun-Ae;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.332-336
    • /
    • 2011
  • Hydrogels have been investigated due to their potential in a myriad of applications. The introduction of functional moiety such as sulfide has expanded their applicability. In this study, an investigation was carried out on the introduction of fucoidan into the hydrogels of clay/acrylamide. In the resulting semi-IPN nanocomposite hydrogels, the linear polysaccharide, fucoidan, has strong ionic interactions with clay. It was also confirmed from simple mixing tests that fucoidan can physically crosslink with clay without chemical crosslinks. In the semi-IPN hydrogels, equilibrium swelling ratio increased with the content of fucoidan. Elastic modulus increased with an initial increase in the content of fucoidan, and decreased with a further increase. The work of fracture results of these hydrogels showed their tough properties. These hydrogels could provide functional properties such as mucoadhesiveness with tunable hydrogel characteristics.

Relative Parameter Contributions for Encapsulating Silica-Gold Nanoshells by Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels

  • Park, Min-Yim;Lim, Se-Ra;Lee, Sang-Wha;Park, Sang-Eun
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.307-312
    • /
    • 2009
  • Core-shell hydrogel nanocomposite was fabricated by encapsulating a silica-gold nanoshell (SGNS) with poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-AAc) copolymer. The oleylamine-functionalized SONS was used as a nanotemplate for the shell-layer growth of hydrogel copolymer. APS (ammonium persulfate) was used as a polymerization initiator to produce a hydrogel-encapsulated SGNS (H-SGNS). The amounts of NIPAM (N-isopropylacrylamide) monomers were optimized to reproduce the hydrogel-encapsulated SGNS. The shell-layer thickness was increased with the increase of polymerization time and no further increase in the shell-layer thickness was clearly observed over 16 h. H-SGNS exhibited the systematic changes of particle size corresponding to the variation of pH and temperature, which was originated from hydrogen-bonding interaction between PNIPAM amide groups and water, as well as electrostatic forces attributed by the ionization of carboxylic groups in acrylic acid.

Physicochemical Characteristics of Fe3O4 Magnetic Nanocomposites Based on Poly(N-isopropylacrylamide) for Anti-cancer Drug Delivery

  • Davaran, Soodabeh;Alimirzalu, Samira;Nejati-Koshki, Kazem;Nasrabadi, Hamid Tayefi;Akbarzadeh, Abolfazl;Khandaghi, Amir Ahmad;Abbasian, Mojtaba;Alimohammadi, Somayeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • Background: Hydrogels are a class of polymers that can absorb water or biological fluids and swell to several times their dry volume, dependent on changes in the external environment. In recent years, hydrogels and hydrogel nanocomposites have found a variety of biomedical applications, including drug delivery and cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled actuation. Materials and Methods: In this work, synthesis of hydrogel nanocomposites containing magnetic nanoparticles are studied. At first, magnetic nanoparticles ($Fe_3O_4$) with an average size 10 nm were prepared. At second approach, thermo and pH-sensitive poly (N-isopropylacrylamide -co-methacrylic acid-co-vinyl pyrrolidone) (NIPAAm-MAA-VP) were prepared. Swelling behavior of co-polymer was studied in buffer solutions with different pH values (pH=5.8, pH=7.4) at $37^{\circ}C$. Magnetic iron oxide nanoparticles ($Fe_3O_4$) and doxorubicin were incorporated into copolymer and drug loading was studied. The release of drug, carried out at different pH and temperatures. Finally, chemical composition, magnetic properties and morphology of doxorubicin-loaded magnetic hydrogel nanocomposites were analyzed by FT- IR, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM). Results: The results indicated that drug loading efficiency was increased by increasing the drug ratio to polymer. Doxorubicin was released more at $40^{\circ}C$ and in acidic pH compared to that $37^{\circ}C$ and basic pH. Conclusions: This study suggested that the poly (NIPAAm-MAA-VP) magnetic hydrogel nanocomposite could be an effective carrier for targeting drug delivery systems of anti-cancer drugs due to its temperature sensitive properties.