DOI QR코드

DOI QR Code

Synthesis, Characterization, and Antibacterial Applications of Novel Copolymeric Silver Nanocomposite Hydrogels

  • Kim, Yong-Hyun (Department of Chemistry, Changwon National University) ;
  • Babu, V. Ramesh (Department of Chemistry, Changwon National University) ;
  • Thangadurai, Daniel T. (Department of Chemistry, Changwon National University) ;
  • Rao, K.S.V. krishna (Department of Chemistry, Changwon National University) ;
  • Cha, Hyeong-Rae (Department of Chemistry, Changwon National University) ;
  • Kim, Chang-Dae (Department of Physics, Mokpo National University) ;
  • Joo, Woo-Hong (Department of Biology, Changwon National University) ;
  • Lee, Yong-Ill (Department of Chemistry, Changwon National University)
  • Received : 2010.06.21
  • Accepted : 2010.12.06
  • Published : 2011.02.20

Abstract

Copolymeric silver nanocomposite hydrogels were synthesized by using acryloyl phenylalanine (APA), N'-isopropylacrylamide (NIPAM) and crosslinked by N,N-methylene bisacrylamide (MBA) via radical redox polymerization. Present study allows entrapping silver nanoparticles into hydrogel networks. UV-visible spectroscopy and X-ray diffraction (XRD) studies confirmed the formation of silver nanoparticles in hydrogel matrix. 11% of weight loss difference between hydrogel and silver nanocomposite hydrogel is clearly indicates the formation and silver nanoparticles by thermo-gravimetrical analysis. The order of swelling capacity values of hydrogels and silver nanocmposite hydrogels were found to be in the order of placebo copolymeric hydrogel >Ag-copolymeric silver nanocomposite hydrogels. The particle size of silver nanoparticles was analysed and are in the range of 5 - 10 nm which has been confirmed by transmission electron microscopy (TEM) as well as particle size analysis. The silver nanocomposite hydrogel has shown very good antibacterial activity on gram-positive and gram-negative bacteriocides.

Keywords

References

  1. Elvira, C.; Mano, J. F.; Roman, J. S.; Reis, R. L. Biomaterials 2002, 23, 1955. https://doi.org/10.1016/S0142-9612(01)00322-2
  2. Kopecek, J. Biomaterials 2007, 8, 5185.
  3. Peppas, N. A.; Bures, P.; Leobandung, W.; Ichikawa, H. Eur. J. Pharm. Biopharm. 2000, 50, 27. https://doi.org/10.1016/S0939-6411(00)00090-4
  4. Wichterle, O.; Lim, D. Nature 1960, 185, 117. https://doi.org/10.1038/185117a0
  5. Hoffman, A. S. Adva Drug Del Rev.1960, 43, 3.
  6. Van Tomme, S. R.; Storm, G.; Hennink, W. E. Int J Pharma. 2008, 355, 1. https://doi.org/10.1016/j.ijpharm.2008.01.057
  7. Mahkam, M.; Poorgholy, N.; Vakhshouri, L. Macromol. Res. 2009, 17, 709. https://doi.org/10.1007/BF03218932
  8. Ferreira, L.; Vidal, M. M.; Gil, M. H. Int J Pharma. 2000, 194, 169. https://doi.org/10.1016/S0378-5173(99)00375-0
  9. Lutolf, M. P.; Lauer-Fields, J. L.; Schmoekel, H. G.; Metters, A. T.; Weber, F. E.; Fields, G. B. Proc. Nat. Acad. Sci. 2003, 100, 5413. https://doi.org/10.1073/pnas.0737381100
  10. Shimoboji, T.; Larenas, E.; Fowler, T.; Kulkarni, S.; Hoffman, A. S.; Stayton, P. S. Proc. Nat. Acad. Sci. 2002, 99, 16592. https://doi.org/10.1073/pnas.262427799
  11. Szepes, A.; Makai, Z.; Blumer, C.; Mader, P. K., Jr.; Szabo-Revesz, P. Carbohydrate Polymers 2008, 72, 571. https://doi.org/10.1016/j.carbpol.2007.09.028
  12. Dahl, J.; Maddux, B. L.; Hutchison, J. E. Chem. Rev. 2007, 107, 2228. https://doi.org/10.1021/cr050943k
  13. Hutchison, J. E. Greener Nanoscience 2008, 2, 395.
  14. Anstas, P. T.; Warner, J. C. Green Chemistry; Theory and Practice; Oxford University Press Inc.: New York, 1998.
  15. De Simone, J. M. Science. 2002, 297, 799. https://doi.org/10.1126/science.1069622
  16. Cross, R. A.; Kalra, B. Science 2002, 297, 803 https://doi.org/10.1126/science.297.5582.803
  17. Poliakoff, M.; Anastas, T. A. Nature 2000, 413, 257.
  18. Raveendran, P.; Fu, J.; Wallen, S. L. J. Am. Chem. Soc. 2003, 125, 13940. https://doi.org/10.1021/ja029267j
  19. Murali Mohan, Y.; Premkumar, T.; Lee, K. J.; Geckeler, K. E. Macromol Rapid Commun. 2006, 27, 1346. https://doi.org/10.1002/marc.200600297
  20. Wang, C.; Flynn, N. T.; Langer, R. Adv. Mater. 2004, 16, 1074. https://doi.org/10.1002/adma.200306516
  21. Park, M. Y.; Lim, S.; Lee, S. W.; Park, S. E. Macromol. Res. 2009, 17, 307. https://doi.org/10.1007/BF03218867
  22. Zhao, X.; Ding, X.; Deng, Z.; Zheng, Z.; Peng, Y.; Long, X. Macromol Rapid Commun. 2005, 26, 1784. https://doi.org/10.1002/marc.200500534
  23. Lu, Y.; Spyra, P.; Mei, Y.; Ballauff, M.; Pich, A. Macromol. Chem. Phys. 2007, 208, 254. https://doi.org/10.1002/macp.200600534
  24. Murali Mohan, Y.; Lee, K. J.; Premkumar, T.; Geckeler, K. E. Polymer 2007, 48, 158. https://doi.org/10.1016/j.polymer.2006.10.045
  25. Wang, C.; Flynn, N. T.; Langer, R. Mater. Res. Soc. Symp. Proc. 2004, R2.2.1, 820.
  26. Kazimierska, E. A.; Ciszokowska, M. Electroanalysis 2005, 17, 1384. https://doi.org/10.1002/elan.200503286
  27. Mayer, C. R.; Cabuil, V.; Lalot, T.; Thouvenot, R. Adv. Mater. 2000, 12, 417. https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<417::AID-ADMA417>3.0.CO;2-K
  28. Saravanan, P.; Raju, M. P.; Alam, S. Mater. Chem. Phys. 2007, 103, 278. https://doi.org/10.1016/j.matchemphys.2007.02.025
  29. Casolaro, M.; Paccagnini, E.; Mendichi, R.; Ito, Y. Macromolecules 2005, 38, 2460. https://doi.org/10.1021/ma047652i
  30. Acharya, H.; Sung, J.; Shin, H.; Park, S. Y.; Min, B. G.; Park, C. Reactive & Functional Polymers 2009, 69, 552. https://doi.org/10.1016/j.reactfunctpolym.2009.01.006

Cited by

  1. Biodegradable sodium alginate-based semi-interpenetrating polymer network hydrogels for antibacterial application vol.102, pp.9, 2013, https://doi.org/10.1002/jbm.a.34991
  2. Network formation in graphene oxide composites with surface grafted PNIPAM chains in aqueous solution characterized by rheological experiments vol.16, pp.18, 2014, https://doi.org/10.1039/C3CP55092C
  3. Synthesis of alginate based silver nanocomposite hydrogels for biomedical applications vol.22, pp.8, 2014, https://doi.org/10.1007/s13233-014-2117-7
  4. Gellan gum/clay hydrogels for tissue engineering application: Mechanical, thermal behavior, cell viability, and antibacterial properties vol.31, pp.6, 2016, https://doi.org/10.1177/0883911516643106
  5. vol.66, pp.18, 2017, https://doi.org/10.1080/00914037.2017.1291513
  6. Biodegradable Tragacanth Gum Based Silver Nanocomposite Hydrogels and Their Antibacterial Evaluation pp.1572-8900, 2017, https://doi.org/10.1007/s10924-017-0989-2
  7. Antimicrobial poly(vinyl alcohol) cryogel–copper nanocomposites for possible applications in biomedical fields vol.18, pp.4, 2015, https://doi.org/10.1080/15685551.2015.1012628
  8. Chitosan–poly(aminopropyl/phenylsilsesquioxane) hybrid nanocomposite membranes for antibacterial and drug delivery applications vol.64, pp.2, 2011, https://doi.org/10.1002/pi.4789
  9. Gamma irradiation synthesis of Ag/PVA hydrogels and its antibacterial activity vol.3, pp.6, 2011, https://doi.org/10.1016/j.matpr.2016.04.076
  10. Antimicrobial activity of silver nanoparticles encapsulated in poly- N -isopropylacrylamide-based polymeric nanoparticles vol.13, pp.None, 2011, https://doi.org/10.2147/ijn.s153485
  11. Antibacterial Properties of Silver Nanoparticles Embedded on Polyelectrolyte Hydrogels Based on α-Amino Acid Residues vol.4, pp.2, 2011, https://doi.org/10.3390/gels4020042
  12. Development of alginate‐gum acacia‐Ag0 nanocomposites via green process for inactivation of foodborne bacteria and impact on shelf life of black grapes (Vitis vinifera) vol.136, pp.15, 2019, https://doi.org/10.1002/app.47331
  13. Hydrophilic Submicron Nanogel Particles for Specific Recombinant Proteins Extraction and Purification vol.12, pp.6, 2011, https://doi.org/10.3390/polym12061413
  14. Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium arctostaphlyos Extract and Evaluating Its Antibacterial Properties vol.2021, pp.None, 2011, https://doi.org/10.1155/2021/5572252
  15. Multifaceted phytogenic silver nanoparticles by an insectivorous plant Drosera spatulata Labill var. bakoensis and its potential therapeutic applications vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-01281-8