• Title/Summary/Keyword: Nano-tribology

Search Result 124, Processing Time 0.026 seconds

Study on Tribo-chemistry Properties of Some Additives on Base Oils of Friendly Environmentally Lubricants

  • Bin, Ye;De-hua, Tao
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.263-264
    • /
    • 2002
  • The tribological characteristic of several environmentally friendly lubricating base stocks was examined, and the effect of some commonly used additives on th tribological behavior of the lubricating oils was comparatively investigated on a four-ball machine. It has been found that the commercial additives including butene sulfide, wax chloride, zinc dialkyldithiophosphate and ashless P-N type agent helped to improve the friction-reducing and antiwear properties as well as the extreme pressure behavior. Non-toxic nanoscale $(CF)_x$ showed the best friction-reducing ability, though it registered relatively poor extreme pressure properties. The mechanism on friction of nano-scale material is discussed.

  • PDF

An Analysis of Tribological Properties of Metal Interlayered DLC Films Prepared by PECVD Method (PECVD로 증착된 금속층을 포함하는 DLC 박막의 기계적 특성 분석)

  • Jeon, Young-Sook;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.631-635
    • /
    • 2006
  • The properties of metal interlayered DLC films between the Si substrate and the DLC films were studied. DC magnetron sputtering method has been used to deposit intermediate layers of metals. And RF-PECVD method has been employed to synthesize DLC onto substrates of the silicon and metal layers. After we used metal Inter-layers, such as chromium, nickel, titanium and we studied tribological properties of the DLC films. The thickness of films were observed by field emission scanning electron microscope (FE-SEM). Also the surface morphology of the films were observed by an atomic force microscope (AFM). The crystallographic properties of the films were analyzed with X-ray diffraction (XRD), the friction coefficients were investigated by AFM in friction force microscope (FFM) mode. Tribological performances of the films were estimated by nano-indenter, stress tester measurement.

An Experimental Study of Valve Seat Material Galling Characteristics in Waterworks

  • Park, Sung-Jun;Kim, Young-Tae;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • Environmental contamination creates shortages of potable water. In such situations, the leakage of water due to breakage or aging of rubber valve seats is a serious problem. Rubber is apt to break when it is placed between two materials that contact each other. One way to avoid water leakage due to rubber damage and breakdown is to replace the rubber with metal, which is currently taking place in water distribution systems. In tribology, a severe form of wear is characterized by local macroscopic material transfer or removal, or by problems with sliding protrusions when two solid surfaces experience relative sliding under load. One of the major problems when metal slides is the occurrence of galling. Experimentally, various conditions influence incipient galling, such as hardness, surface roughness, temperature, load, velocity, and the external environment. This study sought to verify the galling tendencies of metal according to its hardness, surface roughness, load, and sliding velocity, and determine the quantitative effect of each factor on the galling tendencies.

A Study on the Zeta-potential of CMP processed Sapphire Wafers (CMP 가공된 사파이어웨이퍼의 웨이퍼내 표면전위에 관한 연구)

  • Hwang Sung Won;Shin Gwisu;Kim Keunjoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.46-52
    • /
    • 2005
  • The sapphire wafer was polished by the implementation of the surface machining technology based on nano-tribology, The removal process has been performed by grinding, lapping and chemical-mechanical polishing. For the chemical mechanical polishing process, the chemical reaction between the slurry and sapphire wafer was investigated in terms of the change of Zeta-potential between two materials. The Zeta-potential was -4.98 mV without the slurry in deionized water and was -37.05 mV for the slurry solution. By including the slurry into the deionized water the Zeta-potential -29.73 mV, indicating that the surface atoms of sapphire become more repulsive to be easy to separate. The average roughness of the polished surface of sapphire wafer was ranged to 1∼4$\AA$.

Tribological Properties of Annealed Diamond-like Carbon Film Synthesized by RF PECVD Method

  • Choi, Won-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.118-122
    • /
    • 2006
  • Diamond-like carbon (DLC) films were prepared on silicon substrates by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method using methane $(CH_4)$ and hydrogen $(H_2)$ gas. We examined the effects of the post annealing temperature on the tribological properties of the DLC films using friction force microscopy (FFM). The films were annealed at various temperatures ranging from 300 to $900^{\circ}C$ in steps of $200^{\circ}C$ using RTA equipment in nitrogen ambient. The thickness of the film was observed by scanning electron microscopy (SEM) and surface profile analysis. The surface morphology and surface energy of the films were examined using atomic force microscopy and contact angle measurement, respectively. The hardness of the DLC film was measured as a function of the post annealing temperature using a nano-indenter. The tribological characteristics were investigated by atomic force microscopy in FFM mode.

Improved Adhesion of DLC Films by using a Nitriding Layer on AISI H13 Substrate

  • Park, Min-Seok;Kim, Dae-Young;Shin, Chang-Seouk;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.307-314
    • /
    • 2021
  • Diamond-like carbon (DLC) is difficult to achieve sufficient adhesion because of weak bonding between DLC film and the substrate. The purpose of this study is to improve the adhesion between substrate and DLC film. DLC film was deposited on AISI H13 using linear ion source. To improve adhesion, the substrate was treated by dual post plasma nitriding. In order to define the mechanism of the improvement in adhesive strength, the gradient layer between substrate and DLC film was analyzed by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The microstructure of the DLC film was analyzed using a micro Raman spectrometer. Mechanical properties were measured by nano-indentation, micro vickers hardness tester and tribology tester. The characteristic of adhesion was observed by scratch test. The adhesion of the DLC film was enhanced by active screen plasma nitriding layer.

Effect of Roundness Error of a Crank Pin Bearing for a Marine Engine on the Minimum Film Thickness (박용엔진 크랭크 핀 베어링의 형상오차가 최소유막두께에 미치는 영향)

  • Ha, Yang-Hyup;Shin, In-Dong;Lee, Sang-Min;Lee, Seung-Jun;Lee, Deug-Woo
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.256-263
    • /
    • 2011
  • Bearings of marine engines are operated under severe conditions because of dynamic load and low sliding speed. This paper deals with lubrication analysis of a crank pin bearing for a marine diesel engine. Journal center locus and oil film thickness are compared of crank pin bearing. In the past researches, journal bearings have been studied only about the surface of bearing. In addition to this conventional research, this paper analyzes the effect of roundness error of a journal and a bearing on the minimum film thickness. Numerical analysis has been studied by using Reynolds equation and also Half-Sommerfeld condition is applied as boundary condition. Futhermore, this study investigates the effect of roundness error change on the minimum film thickness. The results demonstrate that the bigger amplitude of roundness error yields, the lower minimum oil film thickness is. In comparison to previous research considered a journal and a bearing individually, the results considering a journal and a bearing together show that amplitude of roundness error of journal has very little effect on the minimum oil film thickness.

Surface Characteristics and Micro-Scale Friction Property of Natural Surface (식물잎의 표면형상 및 마이크로-스케일에서의 마찰 특성)

  • Yoon, Eui-Sung;Kim, Hong-Joon;Singh R. Arvind;Kim, Jin-Seok
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.237-242
    • /
    • 2006
  • Surfaces found in nature, including biological surfaces have been providing inspiration to modify/fabricate artificial surfaces as solutions for tribological applications. As an example, the concept of 'lotus-effect' has motivated tribologists world wide to modify/fabricate surfaces for enhanced tribological performance. These was done by creating nano/micro-scale asperities on various surfaces using ion beam milling and ion-beam assisted roughening. In order to understand the attributes of natural surfaces, which are inspirational to tribologists, we characterized the surface of two natural surfaces-Nelumbo nucifera (lotus) and Colocasia esculenta leaves. Further, we evaluated their micro-scale friction property, both in their fresh and dried conditions. The characterization of surfaces was conducted using a confocal microscope and SEM, which involved the evaluation of size and distribution of protuberances. The micro-scale friction property was evaluated using a ball-on-flat type micro-tribo tester, under reciprocating motion. A soda lime glass ball (2 mm diameter) was used in these tests. Tests were conducted at the applied normal load of $3000{\mu}N$, at a sliding speed of 1 mm/sec for a scan length of 3 mm. All experiments were conducted at ambient temperature ($24{\pm}1^{\circ}C}$) and relative humidity ($45{\pm}5%$). It was observed that the friction behaviour of the natural surfaces was influenced by their surface characteristics (morphology and distribution of protuberances) and also by the condition (fresh or dried) in which they were tested.

Study on Frictional Characteristics of Sub-micro Structured Silicon Surfaces (서브 마이크로 구조를 가진 실리콘 표면의 마찰 특성 연구)

  • Han, Ji-Hee;Han, Gue-Bum;Jang, Dong-Yong;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.92-97
    • /
    • 2017
  • The understanding of the friction characteristics of micro-textured surface is of great importance to enhance the tribological properties of nano- and micro-devices. We fabricate rectangular patterns with submicron-scale structures on a Si wafer surface with various pitches and heights by using a focused ion beam (FIB). In addition, we fabricate tilted rectangular patterns to identify the influence of the tilt angle ($45^{\circ}$ and $135^{\circ}$) on friction behaviour. We perform the friction test using lateral force microscopy (LFM) employing a colloidal probe. We fabricate the colloidal probe by attaching a $10{\pm}1-{\mu}m$-diameter borosilicate glass sphere to a tipless silicon cantilever by using a ultraviolet cure adhesive. The applied normal loads range between 200 nN and 1100 nN and the sliding speed was set to $12{\mu}m/s$. The test results show that the friction behavior varied depending on the pitch, height, and tilt angle of the microstructure. The friction forces were relatively lower for narrower and deeper pitches. The comparison of friction force between the sub-micro-structured surfaces and the original Si surface indicate an improvement of the friction property at a low load range. The current study provides a better understanding of the influence of pitch, height, and tilt angle of the microstructure on their tribological properties, enabling the design of sub-micro- and micro-structured Si surfaces to improve their mechanical durability.

Effect of Crystal Orientation on Material Removal Characteristics in Sapphire Chemical Mechanical Polishing (사파이어 화학기계적 연마에서 결정 방향이 재료제거 특성에 미치는 영향)

  • Lee, Sangjin;Lee, Sangjik;Kim, Hyoungjae;Park, Chuljin;Sohn, Keunyong
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.106-111
    • /
    • 2017
  • Sapphire is an anisotropic material with excellent physical and chemical properties and is used as a substrate material in various fields such as LED (light emitting diode), power semiconductor, superconductor, sensor, and optical devices. Sapphire is processed into the final substrate through multi-wire saw, double-side lapping, heat treatment, diamond mechanical polishing, and chemical mechanical polishing. Among these, chemical mechanical polishing is the key process that determines the final surface quality of the substrate. Recent studies have reported that the material removal characteristics during chemical mechanical polishing changes according to the crystal orientations, however, detailed analysis of this phenomenon has not reported. In this work, we carried out chemical mechanical polishing of C(0001), R($1{\bar{1}}02$), and A($11{\bar{2}}0$) substrates with different sapphire crystal planes, and analyzed the effect of crystal orientation on the material removal characteristics and their correlations. We measured the material removal rate and frictional force to determine the material removal phenomenon, and performed nano-indentation to evaluate the material characteristics before and after the reaction. Our findings show that the material removal rate and frictional force depend on the crystal orientation, and the chemical reaction between the sapphire substrate and the slurry accelerates the material removal rate during chemical mechanical polishing.