• Title/Summary/Keyword: Nano-thickness

Search Result 844, Processing Time 0.033 seconds

A Study of Thin-Film Transistor with Mg0.1Zn0.9O/ZnO Active Structure (Mg0.1Zn0.9O/ZnO 활성층 구조의 박막트랜지스터 연구)

  • Lee, Jong Hoon;Kim, Hong Seung;Jang, Nak Won;Yun, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.472-476
    • /
    • 2014
  • We report the characteristics of thin-film transistor (TFT) to make the bi-channel structure with stacked $Mg_{0.1}Zn_{0.9}O$ (Mg= 10 at.%) and ZnO. The ZnO and $Mg_{0.1}ZnO_{0.9}O$ thin films were deposited by radio frequency (RF) co-sputter system onto the thermally oxidized silicon substrate. A total thickness of active layer was 50 nm. Firstly, the ZnO thin films were deposited to control the thickness from 5 nm to 30 nm. Sequentially, the $Mg_{0.1}ZnO_{0.9}O$ thin films were deposited to change from 45 nm to 20 nm. The bi-layer TFT shows more improved properties than the single layer TFT. The field effect mobility and subthreshold slope for $Mg_{0.1}ZnO_{0.9}O$/ZnO-TFT are $7.40cm^2V^{-1}s^{-1}$ and 0.24 V/decade at the ZnO thickness of 10 nm, respectively.

A study on the device structure optimization of nano-scale MuGFETs (나노 스케일 MuGFET의 소자 구조 최적화에 관한 연구)

  • Lee Chi-Woo;Yun Serena;Yu Chong-Gun;Park Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.23-30
    • /
    • 2006
  • This paper describes the short-channel effect(SCE), corner effect of nano-scale MuGFETs(Multiple-Gate FETs) by three-dimensional simulation. We can extract the equivalent gate number of MuGFETs(Double-gate=2, Tri-gate=3, Pi-gate=3.14, Omega-gate=3.4, GAA=4) by threshold voltage model. Using the extracted gate number(n) we can calculate the natural length for each gate devices. We established a scaling theory for MuGFETs, which gives a optimization to avoid short channel effects for the device structure(silicon thickness, gate oxide thickness). It is observed that the comer effects decrease with the reduction of doping concentration and gate oxide thickness when the radius of curvature is larger than 17 % of the channel width.

Fracture resistance of zirconia and resin nano ceramic implant abutments according to thickness after thermocycling (지르코니아와 레진나노세라믹 임플란트 지대주의 두께에 따른 열순환 후 파절저항)

  • Lee, Jung-Won;Cha, Hyun-Suk;Lee, Joo-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.2
    • /
    • pp.144-150
    • /
    • 2017
  • Purpose: The aim of this in vitro study is to investigate load bearing capacity of esthetic abutments according to the type of material and wall thickness. Materials and methods: 70 specimens equally divided into seven groups according to their abutment wall thicknesses. The abutments prepared with titanium 0.5 mm wall thickness were used as a control group (Ti-0.5), whereas zirconia abutments and resin nano ceramic abutments with wall thickness 0.5 mm, 0.8 mm and 1.0 mm were prepared as test groups (Zir-0.5, Zir-0.8, Zir-1.0 and RNC-0.5, RNC-0.8, RNC-1.0). All specimens were tested in a universal testing machine to evaluate their resistance to fracture and all of them underwent thermo-cycling before loading test. Mean fracture values of the groups were measured and statistical analyses were made using two-way ANOVA. Results: Zir-1.0 showed the highest mean strength ($2,476.3{\pm}342.0N$) and Zir-0.8 ($1,518{\pm}347.9N$), Ti-0.5 ($1,041.8{\pm}237.2N$), Zir-0.5 ($631.4{\pm}149.0N$) were followed. The strengths of RNC groups were significantly lower compared to other two materials (RNC-1.0 $427.5{\pm}72.1$, RNC-0.8 $297.9{\pm}41.2$) and the strengths of all the test groups decreased as the thickness decreases (P < .01). RNC-0.5 ($127.4{\pm}35.3N$) abutments were weaker than all other groups (P < .05). Conclusion: All tested zirconia abutments have the potential to withstand the physiologic occlusal forces in anterior and posterior regions. In resin nano ceramic abutments, wall thickness more than 0.8 mm showed the possibility of withstanding the occlusal forces in anterior region.

Effect of Ga-doping on the properties of ZnO films grown on glass substrate at room temperature by radio frequency magnetron sputtering (RF 마그네트론 스퍼터링 방법으로 상온에서 유리기판 위에 성장시킨 ZnO의 성질에 미치는 Ga 도핑 효과)

  • Kim, G.C.;Lee, J.S.;Lee, S.K.;Kim, D.H.;Lee, S.H.;Moon, J.H.;Jeon, M.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • We present the effect of Ga-doping on the electrical, structural and optical properties of ZnO layers with a thickness of ${\sim}500nm$ deposited on glass substrates. Polycrystalline ZnO and Ga-doped ZnO (GZO) layers were deposited by radio frequency (rf) magnetron sputtering at room temperature. Based on the X-ray diffraction (XRD) and transmission electron microscopy (TEM) data, the crystalline quality of Ga-doped ZnO film was improved and GZO film has a preferred orientation along with the (002) crystal direction. The transmittance of the GZO film was enhanced by 10% in the visible region from that of the ZnO film. From photoluminescence (PL) data, the ratio of intensity of near band edge (NBE) emission to deep level (DL) emission was as high as 2.65:1 and 1.27:1 in the GZO and ZnO films, respectively. The res istivities of GZO and ZnO films were measured to be 1.27 and 1.61 $\Omega{\cdot}cm$, respectively. The carrier concentrations of ZnO and GZO film were approximately 1018 and 1020 $cm^2$/Vs, respectively. Based on our experimental results, the Ga-doping improves the electrical, structural and optical properties of ZnO film with potential application.

The Effect of $TiO_2$ Thickness on the Performance of Dye-Sensitized Solar Cells ($TiO_2$ 두께에 따른 염료감응형 태양전지의 효율 변화)

  • Kim, Dae-Hyun;Park, Mi-Ju;Lee, Sung-Uk;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.147-148
    • /
    • 2007
  • Dye-sensitized solar cell using conversion of solar energy to electrical energy appeared that which solves a environmental matter. The dye-sensitized solar cell uses nano-crystalline oxide semiconductor for absorbing dye. The $TiO_2$ is used most plentifully. The efficiency of the dye-sensitized solar cell changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. In this paper, we report The effect of titania$(TiO_2)$ thickness on the performance of dye-sensitized solar cells. Using doctor blade method, It produced the thickness of the $TiO_2$ with $7\;{\mu}m,\;10\;{\mu}m,\;13\;{\mu}m$. The efficiency was the best from $10{\mu}m$. It had relatively low efficiency on the thickness from $7\;{\mu}m\;to\;13\;{\mu}m$. The reason why it presents low efficiency on $7\;{\mu}m$ thickness is that excited electrons can not be delivered enough due to thin thickness of $7\;{\mu}m\;TiO_2$. And The reason why it presents low efficiency on $13\;{\mu}m$ thickness is that thick $13\;{\mu}m\;TiO_2$ can not penetrate the sunlight enough.

  • PDF

SPICE Model of Drain Induced Barrier Lowering in Junctionless Cylindrical Surrounding Gate (JLCSG) MOSFET (무접합 원통형 MOSFET에 대한 드레인 유도 장벽 감소의 SPICE 모델)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.278-282
    • /
    • 2018
  • We propose a SPICE model of drain-induced barrier lowering (DIBL) for a junctionless cylindrical surrounding gate (JLCSG) MOSFETs. To this end, the potential distribution in the channel is obtained via the Poisson equation, and the threshold voltage model is presented for the JLCSG MOSFET. In a JLCSG nano-structured MOSFET, a channel radius affects the carrier transfer as well as the channel length and oxide thickness; therefore, DIBL should be expressed as a function of channel length, channel radius, and oxide thickness. Consequently, it can be seen that DIBLs are proportional to the power of -3 for the channel length, 2 for the channel radius, 1 for the thickness of the oxide film, and the constant of proportionality is 18.5 when the SPICE parameter, the static feedback coefficient ${\eta}$, is between 0.2 and 1.0. In particular, as the channel radius and the oxide film thickness increase, the value of ${\eta}$ remains nearly constant.

Theoretical Calculation and Experimental Verification of the Hf/Al Concentration Ratio in Nano-mixed $Hf_xAl_yO_z$ Films Prepared by Atomic Layer Deposition

  • Kil, Deok-Sin;Yeom, Seung-Jin;Hong, Kwon;Roh, Jae-Sung;Sohn, Hyun-Cheol;Kim, Jin-Woong;Park, Sung-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.120-126
    • /
    • 2005
  • We have proposed a characteristic method to estimate real composition when multi component oxide films are deposited by ALD. Final atomic concentration ratio was theoretically calculated from the film densities and growth rates for $HfO_2$ and $Al_2O_3$ using ALD processed HfxAhOz mms.W e have transformed initial source feeding ratio during deposition to fins] atomic ratio in $Hf_xAl_yO_z$ films through thickness factors ($R_{HFO_2}$ ami $R_{Al_2O_3}$) ami concentration factor(C) defined in our experiments. Initial source feeding ratio could be transformed into the thickness ratio by each thickness factor. Final atomic ratio was calculated from thickness ratio by concentration factor. It has been successfully confirmed that the predicted atomic ratio was in good agreement with the actual measured value by ICP-MS analysis.

A Study on Cause of Defects in NIL Molding Process using FEM (유한요소 해석을 이용한 나노임프린트 가압 공정에서 발생하는 결함 원인에 대한 연구)

  • Song, N.H.;Son, J.W.;Kim, D.E.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.364-367
    • /
    • 2007
  • In nano-imprint lithography (NIL) process, which has shown to be a good method to fabricate polymeric patterns, several kinds of pattern defects due to thermal effects during polymer flow and mold release operation have been reported. A typical defect in NIL process with high aspect ratio and low resist thickness pattern is a resist fracture during the mold release operation. It seems due to interfacial adhesion between polymer and mold. However, in the present investigation, FEM simulation of NIL molding process was carried out to predict the defects of the polymer pattern and to optimize the process by FEA. The embossing operation in NIL process was investigated in detail by FEM. From the analytical results, it was found that the lateral flow of polymer resin and the applied pressure in the embossing operation induce the weld line and the drastic lateral strain at the edge of pattern. It was also shown that the low polymer-thickness result in the delamination of polymer from the substrate. It seems that the above phenomena cause the defects of the final polymer pattern. To reduce the defect, it is important to check the initial resin thickness.

  • PDF

A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams

  • Kheroubi, Boumediene;Benzair, Abdelnour;Tounsi, Abdelouahed;Semmah, Abdelwahed
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.251-264
    • /
    • 2016
  • In this paper, a simple and refined nonlocal hyperbolic higher-order beam theory is proposed for bending and vibration response of nanoscale beams. The present formulation incorporates the nonlocal scale parameter which can capture the small scale effect, and it considers both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements across the thickness without employing shear correction factor. The highlight of this formulation is that, in addition to modeling the displacement field with only two unknowns, the thickness stretching effect (${\varepsilon}_z{\neq}0$) is also included in the present model. By utilizing the Hamilton's principle and the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanoscale beam are reformulated. Verification studies demonstrate that the developed theory is not only more accurate than the refined nonlocal beam theory, but also comparable with the higher-order shear deformation theories which contain more number of unknowns. The theoretical formulation proposed herein may serve as a reference for nonlocal theories as applied to the static and dynamic responses of complex-nanobeam-system such as complex carbon nanotube system.

Preparation and Electrical Properties of TiO2 Films Prepared by Sputtering for a Pulse Power Capacitor (스퍼터링에 의한 펄스파워 캐패시터용 TiO2 박막의 제조 및 전기적특성)

  • Park, Sang-Shik
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.642-647
    • /
    • 2012
  • $TiO_2$ thin films for a pulse power capacitor were deposited by RF magnetron sputtering. The effects of the deposition gas ratio and thickness on the crystallization and electrical properties of the $TiO_2$ films were investigated. The crystal structure of $TiO_2$ films deposited on Si substrates at room temperature changed to the anatase from the rutile phase with an increase in the oxygen partial pressure. Also, the crystallinity of the $TiO_2$ films was enhanced with an increase in the thickness of the films. However, $TiO_2$ films deposited on a PET substrate showed an amorphous structure, unlike those deposited on a Si substrate. An X-ray photoelectron spectroscopy(XPS) analysis revealed the formation of chemically stable $TiO_2$ films. The dielectric constant of the $TiO_2$ films as a function of the frequency was significantly changed with the thickness of the films. The films showed a dielectric constant of 100~110 at 1 kHz. However, the dissipation factors of the films were relatively high. Films with a thickness of about 1000nm showed a breakdown strength that exceeded 1000 kV/cm.