• Title/Summary/Keyword: Nano-structures

Search Result 933, Processing Time 0.029 seconds

The Study on Properties of AAO(Anodic Aluminum Oxide) Structures with Hole Effect (Hole effect를 고려한 AAO(Anodic Aluminum Oxide) 구조물의 물성치에 대한 연구)

  • 고성현;이대웅;지상은;박현철;이건홍;황운봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.186-193
    • /
    • 2004
  • Porous anodic alumina has been used widely for corrosion protection of aluminum surfaces or as dielectric material in micro-electronics applications. It exhibits a homogeneous morphology of parallel pores which can easily be controlled between 10 and 400nm. It has been applied as a template for fabrication of the nanometer-scale composite. In this study, mechanical properties of the AAO structures are measured by the nano indentation method. Nano indentation technique is one of the most effective methods to measure the mechanical properties of nano-structures. Basically, hardness and elastic modulus can be obtained by the nano-indentation. Using the nano-indentation method, we investigated the mechanical properties of the AAO structure with different size of nano-holes. In results, we find the hole effect that changes the mechanical properties as size of nano hole.

Graphene Based Nano-electronic and Nano-electromechanical Devices

  • Lee, Sang-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.13-13
    • /
    • 2011
  • Graphene based nano-electronic and nano-electromechanical devices will be introduced in this presentation. The first part of the presentation will be covered by our recent results on the fabrication and physical properties of artificially twisted bilayer graphene. Thanks to the recently developed contact transfer printing method, a single layer graphene sheet is stacked on various substrates/nano-structures in a controlled manner for fabricating e.g. a suspended graphene device, and single-bilayer hybrid junction. The Raman and electrical transport results of the artificially twisted bilayer indicates the decoupling of the two graphene sheets. The graphene based electromechanical devices will be presented in the second part of the presentation. Carbon nanotube based nanorelay and A new concept of non-volatile memory based on the carbon nanotube field effect transistor together with microelectromechanical switch will be briefly introduced at first. Recent progress on the graphene based nano structures of our group will be presented. The array of graphene resonators was fabricated and their mechanical resonance properties are discussed. A novel device structures using carbon nanotube field effect transistor combined with suspended graphene gate will be introduced in the end of this presentation.

  • PDF

Structural Evolution of ZnO:Ga Thin Film on Profiled Substrate Grown by Radio Frequency Sputtering

  • Sun, J.H.;Kim, J.H.;Ahn, B.G.;Park, S.Y.;Jung, E.J.;Lee, J.H.;Kang, H.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.72-72
    • /
    • 2011
  • Recently, Zinc oxide (ZnO) nano-structures have been received attractive attention because of their outstanding optical and electrical properties. It might be a promising material considered for applications to photonic and electronic devices such as ultraviolet light emitting diode, thin film transistor, and gas sensors. ZnO nano-structures can be typically synthesized by the VLS growth mode and self-assembly. In the VLS growth mode using various growth techniques, the noble metal catalysts such as Au and Sn were used. However, the growth of ZnO nano-structures on nano-crystalline Au seeds using radio frequency (RF) magnetron sputtering might be explained by the profile coating, i.e. the ZnO nano-structures were a morphological replica of Au seeds. Ga doped ZnO (ZnO:Ga) nano-structures using this concept were synthesized and characterized by XRD, AFM, SEM, and TEM. We found that surface morphology is drastically changed from initial islands to later sun-flower typed nano-structures. We will present the structural evolution of ZnO:Ga nano-structures with increasing the film thickness.

  • PDF

Supramolecular Assembly toward Organic Nanostructures

  • Lee, Myong-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.173-173
    • /
    • 2006
  • We have explored a strategy to control the supramolecular nano-structures self-assembled from rigid segments through attachment of flexible chains through microphase separation and anisotropic arrangement. Supramolecular structures formed by self-assembly of rigid building blocks can be precisely controlled from 1-D layered, 3-D bicontinuous cubic to 2-D cylindrical structures by systematic variation of the type and relative length of the respective blocks. Furthermore, depending on the individual molecular architectures, rigid building blocks self-assemble into a wide range of supramolecular structures such as honeycomb, disk, cylinder, helix, tube, barrel stave, and nano-cage.

  • PDF

Fabrication of nano-structured PMMA substrates for the improvement of the optical transmittance (반구형 나노 패턴의 크기에 따른 PMMA기판의 광특성 평가)

  • Park, Y.M.;Shin, H.G.;Kim, B.H.;Seo, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.217-220
    • /
    • 2009
  • This paper presents fabrication method of nano-structured PMMA substrates as well as evaluations of their optical transmittance. For anti-reflective surface, surface coating method had been conventionally used. However, it requires high cost, complicated process and post-processing times. In this study, we suggested the fabrication method of anti-reflective surface by the hot embossing process. Using the nano patterned master fabricated by anodic aluminum oxidation process. Anodic aluminum oxide(AAO) is widely used as templates or a molds for various applications such as carbon nano tube (CNT), nano rod and nano dots. Anodic aluminum oxidation process provides highly ordered regular nano-structures on the large area, while conventional pattering methods such as E-beam and FIB can fabricate arbitrary nano-structures on small area. We fabricated a porous alumina hole array with various inter-pore distance and pore diameter. In order to replicate nano-structures using alumina nano hole array patterns, we have carried out hot-embossing process with PMMA substrates. Finally the nano-structured PMMA substrates were fabricated and their optical transmittances were measured in order to evaluate the charateristivs of anti-reflection. Anti-reflective structure can be applied to various displays and automobile components.

  • PDF

3-dimensional Nano Structures for Semiconductor Light Source (반도체 광원 적용을 위한 3차원 나노 구조 개발)

  • Kim, Je Won
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.2
    • /
    • pp.96-101
    • /
    • 2020
  • In micro-sized light emitting diodes, which are increasingly attentions as the light sources of displays and semiconductor lighting, increasing the amount of light and improving the luminous efficiency are very important and various development directions and methods have been proposed. In this study, the design of 3-dimensional nano structures through nano frame formation and the application of a nano pattern and a reactive etching method were proposed. And it will also be discussed that nano pillar arrays with nano cavities having improved verticality can be applied to semiconductor light sources through the development of nano frame structures.

Study on Fabrication of Highly Ordered Nano Patterned Master by Using Anodic Aluminum Oxidation (AAO를 이용한 나노 패턴 마스터 제작에 관한 연구)

  • Shin, H.G.;Kwon, J.T.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.368-370
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. The resulting good filled uniform nano molded structure through hot embossing molding process shows the validity of the fabricated nano pattern masters.

  • PDF

Behavioral Characteristics of Nano-Stages According to Hinge Structure (힌지 형태에 따른 나노 스테이지의 거동특성)

  • Oh, Hyun-Seong;Lee, Sung-Jun;Choi, Soo-Chang;Park, Jung-Woo;Lee, Deug-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.23-30
    • /
    • 2007
  • Nano-stages are used in many ultra-precision systems, such as scanning probe microscope(SPM), optical fiber aligners, ultra-precision cutting, measuring systems, and optical systems. It is difficult to find the solutions because the performances and characteristics of nano-scale motion stage are determined by various factors. To understand effects of nano-scale motion stage, three types of hinge structures were designed and manufactured. Each hinge structures were designed following with the results of simulation. And from the result of experiments, hysteresis, displacement, and accuracy were compared with each hinge structures.

Growth of Sheet-like ZnO Nanostructures on ZnO nano rods using Chemical Bath Deposition

  • Kim, Hyuntae;Choi, Soobong
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.38-41
    • /
    • 2018
  • We demonstrate the growth of a sheet-like ZnO membrane on ZnO nano rod layers. The growth process is composed of 3 steps of ZnO seed formation, ZnO nano rod growth and sheet-like ZnO membrane formation on those nano rods. To confirm the fundamental growth mechanism, the lattice structures of each step were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) measurement. Analysis of the relation between the texture coefficient and the surface shape of the ZnO membrane on the ZnO nano rods shows that the surface morphology of ZnO nano structures can be controlled using the temperature of the growing solution and the concentration of the chemical solution.