• 제목/요약/키워드: Nano-storage

검색결과 241건 처리시간 0.027초

기계적 특성 및 공극률 조절을 위한 나노/마이크로섬유 하이브리드 매트 제작 (Fabrication of a Nano/Microfiber Hybrid Mat for Control of Mechanical Properties and Porosity)

  • 김정화;정영훈
    • 대한기계학회논문집A
    • /
    • 제41권1호
    • /
    • pp.41-48
    • /
    • 2017
  • 최근 에너지, 바이오공학, 전자공학 등 다양한 분야에서 초미세 고분자섬유의 활용이 증대되고 있다. 이러한 고분자 섬유의 제작방법의 하나로서 전기방사법은 타 공정에 비해 공정장치가 간단하고 재료의 선택에 제한이 적은 등 다양한 장점을 가져 활발하게 사용되고 있다. 그러나 전기방사공정은 미세한 고분자 섬유가 전기장이 부가된 공기층을 통과하면서 높은 불안정성을 가지기 때문에 전기방사공정을 통해 제작되는 섬유매트의 형상 및 기하학적 특성의 조절이 어려운 단점을 가지고 있다. 본 연구에서는 서로 다른 두 가지 용매를 이용하여 섬유의 직경을 나노섬유와 마이크로섬유로 제작할 수 있음을 보였으며, 이를 조합하여 기계적 특성과 공극률을 조절할 수 있는 하이브리드 섬유매트를 제작할 수 있음을 보였다. 또한 제작된 매트를 이용하여 기계적 특성과 공극률이 조절될 수 있음을 확인하였다.

NaS 배터리 셀 패키지의 알루미나 컴포넌트 접합용 Sealing Glass의 기공율 제어 (Porosity Control of the Sealing Glass for Joining Alumina Components in a NaS Battery Cell Packaging)

  • 김치헌;허유진;김효태
    • 마이크로전자및패키징학회지
    • /
    • 제23권4호
    • /
    • pp.57-61
    • /
    • 2016
  • 대용량 전력저장용 황화나트륨 기반의 전지를 개발함에 있어서 베타 알루미나 고체 전해질 튜브와 알파 알루미나 셀 캡 간의 물리적 접합을 위해서는 세라믹-세라믹 접합용 씰링 글라스 후막 페이스트가 필요하다. 본고에서는 글라스 프릿 분말의 입도, 열처리 조건이 씰링 글라스의 열처리 후 미세구조 특히 기공율과 그 분포에 미치는 영향을 연구하였다. 씰링 글라스 분말의 입자가 클수록 열처리 후의 글라스의 미세 조직상에서의 기공율 및 기공의 수가 감소하였으며, 열처리 온도가 증가 할수록 기공의 수가 감소하는 반면 기공의 크기는 증가함을 확인하였다. 이로써 글라스 씰란트의 제조에 있어서, 글라스 페이스트용 글라스 프릿 분말의 입자 크기와 씰링 열처리 온도의 적절한 선정에 의해 글라스 씰링부의 미세구조에서 기공율과 기공의 분포 및 기공의 수를 제어할 수 있음을 보여주었다.

Practical Challenges Associated with Catalyst Development for the Commercialization of Li-air Batteries

  • Park, Myounggu;Kim, Ka Young;Seo, Hyeryun;Cheon, Young Eun;Koh, Jae Hyun;Sun, Heeyoung;Kim, Tae Jin
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권1호
    • /
    • pp.1-18
    • /
    • 2014
  • Li-air cell is an exotic type of energy storage and conversion device considered to be half battery and half fuel cell. Its successful commercialization highly depends on the timely development of key components. Among these key components, the catalyst (i.e., the core portion of the air electrode) is of critical importance and of the upmost priority. Indeed, it is expected that these catalysts will have a direct and dramatic impact on the Li-air cell's performance by reducing overpotentials, as well as by enhancing the overall capacity and cycle life of Li-air cells. Unfortunately, the technological advancement related to catalysts is sluggish at present. Based on the insights gained from this review, this sluggishness is due to challenges in both the commercialization of the catalyst, and the fundamental studies pertaining to its development. Challenges in the commercialization of the catalyst can be summarized as 1) the identification of superior materials for Li-air cell catalysts, 2) the development of fundamental, material-based assessments for potential catalyst materials, 3) the achievement of a reduction in both cost and time concerning the design of the Li-air cell catalysts. As for the challenges concerning the fundamental studies of Li-air cell catalysts, they are 1) the development of experimental techniques for determining both the nano and micro structure of catalysts, 2) the attainment of both repeatable and verifiable experimental characteristics of catalyst degradation, 3) the development of the predictive capability pertaining to the performance of the catalyst using fundamental material properties. Therefore, under the current circumstances, it is going to be an extremely daunting task to develop appropriate catalysts for the commercialization of Li-air batteries; at least within the foreseeable future. Regardless, nano materials are expected to play a crucial role in this field.

Introduction to the Technology, Applications, Products, Markets, R&D, and Perspectives of Nanofoods in the Food Industry

  • Kim, Dong-Myong;Lee, Gee-Dong
    • Preventive Nutrition and Food Science
    • /
    • 제11권4호
    • /
    • pp.348-357
    • /
    • 2006
  • Nano is a unit that designates a billionth; accordingly nanotechnology could be described as the study and applications of the unique characteristics and phenomena of nanometer size materials. Applications of nanotechnology fall into two categories (one is top-down and the other is bottom-up). Currently, most products are the results of the top-down approach. Nanofoods have distinct functional characteristics stemming from the size, mass, chemical combinations, electrolytic features, magnetic properties of food sources at the nano level and which can be applied for safe absorption and delivery into the body. The greatest advantage of nanofood is that it permits the efficient use of small quantities of nutritional elements by increasing digestive absorption ability and by delivering natural elements without any change in their original characteristics. On the other hand, there are still unsolved problems, such as questions about safety and introduction of harmful material. The demand for new commercial food products is increasing, and commercial food producers are gradually combining nanotechnology and traditional food preparation methods. Nanofoods will improve our eating habits remarkably in the future. Tomorrow we will design nanofoods by shaping molecules and atoms. It will have a big impact on the food and food-processing industries. The future belongs to new products and new processes with the goals of customizing and personalizing consumer products. Nanotechnology is expected to be applied to not only foods themselves, but also to food packaging, production, safety, processing and storage. Also, it is believed that nanotechnology will be applied tracking finished products back to production facilities and even to specific processing equipment in those facilities. The aim of this study is the introduction of technology, applications, products, markets, R&D, and perspectives of nanofoods in the food industry.

바이오소자 기술 (Biodevice Technology)

  • 최정우;이범환
    • Korean Chemical Engineering Research
    • /
    • 제44권1호
    • /
    • pp.1-9
    • /
    • 2006
  • 생물체를 구성하는 세포의 기능과 구성요소 간 상호작용 메커니즘을 인공적으로 모방하여 바이오물질 박막으로 구성된 바이오소자는 의료 진단, 신약 스크리닝, 전자소자, 생물공정, 환경오염 물질 측정 등 다양한 산업 분야에 응용되고 있다. 단백질, DNA, 바이오색소, 세포 등의 생체물질을 칩 상에 고집적으로 배열하여 구성된 바이오 소자로서 바이오 전자소자(생물분자 광다이오드, 바이오 정보저장소자, 바이오 전기발광 소자), DNA칩, 단백질칩, 및 세포칩 등이 개발되어 오고 있다. 생체물질 고정화 기술, 마이크로 및 나노수준의 패터닝기술, 소자 구성 기술, 바이오 멤스 기술의 융합을 통해 바이오소자는 구현되며, 최근에는 나노기술의 적용에 의하여 나노바이오소자도 구현이 가능하다. 본 논문에서는 현재까지 개발된 다양한 바이오소자의 제작 기술과 응용에 대하여 소개하고 향후의 발전 방향에 대하여 다룬다.

금속 나노입자를 이용한 이산화탄소 흡수 속도 촉진 (Enhancement of carbon dioxide absorption rate with metal nano particles)

  • 최영주,;윤민혜;박기태;김인호;정순관
    • 한국산학기술학회논문지
    • /
    • 제16권10호
    • /
    • pp.6439-6444
    • /
    • 2015
  • 지구온난화 방지를 위해 이산화탄소를 제거하는 다양한 방법 중 이산화탄소 포집 및 저장 기술이 가장 유망한 기술로 부각되고 있다. 이산화탄소 포집 및 저장기술이 상용화되기 위해서는 저가의 효율적인 흡수제 개발이 필수적이다. 본 연구에서는 금속 나노입자를 이용하여 이산화탄소 흡수속도를 촉진하는 연구를 수행하였다. 코발트, 아연, 니켈의 세 가지 금속나노입자를 합성하였으며 나노입자 합성 방법 중 습식법과 건식법에 의한 영향을 비교 분석하였다. pH 변화를 이용한 이산화탄소 흡수 속도 측정 결과 습식법으로 제조한 니켈 금속나노입자가 가장 우수한 이산화탄소 흡수 속도 촉진효과를 보였다. 금속 나노입자를 이산화탄소 포집공정에 적용할 경우 흡수탑의 크기를 작게 하여 경제적인 공정 구현이 도움이 될 것으로 기대된다.

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

A Fiber Optic Sensor for Determination of 2,4-Dichlorophenol Based on Oxygen Oxidation Catalyzed by Iron(III) Tetrasulfophthalocyanine

  • Tong, Yilin;Li, Dapeng;Huang, Jun;Zhang, Cong;Li, Kun;Ding, Liyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3307-3311
    • /
    • 2013
  • A new fiber optical sensor was developed for the determination of 2,4-dichlorophenol (DCP). The sensor was based on DCP oxidation by oxygen with the catalysis of iron(III) tetrasulfophthalocyanine (Fe(III)PcTs). The optical oxygen sensing film with $Ru(bpy)_3Cl_2$ as the fluorescence indicator was used to determine the consumption of oxygen in solution. A lock-in amplifier was used for detecting the lifetime of the oxygen sensing film by measuring the phase delay change of the sensor head. The different variables affecting the sensor performance were evaluated and optimized. Under the optimal conditions (i.e. pH 6.0, $25^{\circ}C$, Fe(III)PcTs concentration of 0.62 mg/mL), the linear detection range and response time of the sensor are $1.0{\times}10^{-6}-9.0{\times}10^{-6}$ mol/L and 250 s, respectively. The sensor displays high selectivity, good repeatability and stability, and can be used as an effective tool in analyzing DCP concentration in practical samples.

Fabrication of Nano Dot and Line Arrays Using NSOM Lithography

  • Kwon Sangjin;Kim Pilgyu;Jeong Sungho;Chang Wonseok;Chun Chaemin;Kim Dong-Yu
    • Journal of the Optical Society of Korea
    • /
    • 제9권1호
    • /
    • pp.16-21
    • /
    • 2005
  • Using a cantilever type nanoprobe having a 100㎚m aperture at the apex of the pyramidal tip of a near-field scanning optical microscope (NSOM), nanopatterning of polymer films are conducted. Two different types of polymer, namely a positive photoresist (DPR-i5500) and an azopolymer (Poly disperse orange-3), spincoated on a silicon wafer are used as the substrate. A He-Cd laser with a wavelength of 442㎚ is employed as the illumination source. The optical near-field produced at the tip of the nanoprobe induces a photochemical reaction on the irradiated region, leading to the fabrication of nanostructures below the diffraction limit of the laser light. By controlling the process parameters properly, nanopatterns as small as 100㎚ are produced on both the photoresist and azopolymer samples. The shape and size variations of the nanopatterns are examined with respect to the key process parameters such as laser beam power, irradiation time or scanning speed of the probe, operation modes of the NSOM (DC and AC modes), etc. The characteristic features during the fabrication of ordered structures such as dot or line arrays using NSOM lithography are investigated. Not only the direct writing of nano array structures on the polymer films but also the fabrication of NSOM-written patterns on the silicon substrate were investigated by introducing a passivation layer over the silicon surface. Possible application of thereby developed NSOM lithography technology to the fabrication of data storage is discussed.

자가발전 심장박동기를 위한 에너지 수확 플랫폼 개발 (Development of Energy Harvesting Technologies Platform for Self-Power Rechargeable Pacemaker Medical Device.)

  • 박현문;이정철;김병수
    • 한국전자통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.619-626
    • /
    • 2019
  • 나노 공정기술을 이용한 반도체 및 회로기술의 발전은 의료용 삽입형 기기(MID)의 소형화, 감도, 수명, 신뢰성을 더욱 향상했지만, 최근 MID의 지속적인 동작을 위한 전원의 지속적인 제공 여부가 중요한 도전과제 중 하나이다. 이러한 이유로 신체 내에서 다양한 생체 역학 에너지를 활용하는 자체 전원 이식형 의료기기가 최근에 많이 연구되고 있다. 본 논문에서는 TENG를 이용한 자가발전을 통해 재충전이 가능한 심장박동기를 개발하였다. 그리고 우리는 대형동물의 동작에 따라 삽입된 심장박동기에 내장된 TENG의 발전을 검증하였다. 동물의 움직임으로부터 수집되는 전력은 2.47V로 심장박동기에 센싱을 위해 필요한 전압(1.35V)보다 높은 전원을 획득할 수 있었다.