• Title/Summary/Keyword: Nano-silica particles

Search Result 129, Processing Time 0.031 seconds

Influence of nano-silica on the failure mechanism of concrete specimens

  • Nazerigivi, Amin;Nejati, Hamid Reza;Ghazvinian, Abdolhadi;Najigivi, Alireza
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.429-434
    • /
    • 2017
  • Failure of basic structures material is usually accompanied by expansion of interior cracks due to stress concentration at the cracks tip. This phenomenon shows the importance of examination of the failure behavior of concrete structures. To this end, 4 types of mortar samples with different amounts of nano-silica (0%, 0.5%, 1%, and 1.5%) were made to prepare twelve $50{\times}50{\times}50mm$ cubic samples. The goal of this study was to describe the failure and micro-crack growth behavior of the cement mortars in presence of nano-silica particles and control mortars during different curing days. Failure of mortar samples under compressive strength were sensed with acoustic emission technique (AET) at different curing days. It was concluded that the addition of nano-silica particles could modify failure and micro-crack growth behavior of mortar samples. Also, monitoring of acoustic emission parameters exposed differences in failure behavior due to the addition of the nanoparticles. Mortar samples of nano-silica particles revealed stronger shear mode characteristics than those without nanoparticles, which revealed high acoustic activity due to heterogeneous matrix. It is worth mentioning that the highest compressive strength for 3 and 7 test ages obtained from samples with the addition of 1.5% nano-silica particles. On the other hand maximum compressive strength of 28 curing days obtained from samples with 1% combination of nano-silica particles.

High-Transmittance Films Coated from Silica Colloidal Nano-Particles (II) (실리카 콜로이드 나노입자를 이용한 반사 방지막의 제조 (II))

  • Hwang, Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.399-404
    • /
    • 2005
  • Anti-reflection film was coated by using spherical silica nano colloidal particles and fumed silica particles. Silica colloid sol was reserved between two inclined slide glasses by capillary force, and particles were stacked to form a film onto the substrate as the upper glass was sliding. The deposition processes were studied to enhance the wavelength dependency of the light transmittance and to control the effective refractive index of the film. Both of the spherical and fumed silica particles showed an enhancement of $4.0-4.4\%$ in light transmittance by one step coating. The dependence of the transmittance on wavelength was largely improved at the longer wavelength by partial coating of fumed particles on the film of spherical particles. The effective refractive index of the film was controlled by removing latex particles that were co-deposited with silica particles. Using this process the light reflectance from one side of the glass substrate could be reduced from $4.2\%$ to $0.6\%$ although zero reflectance was not achieved due to the agglomeration of the latex particles.

Impact fracture behavior on particle volume fraction of nano silica composite materials (입자 함유율의 변화에 따른 나노 실리카 복합재료의 충격파괴거동)

  • LEE, Jung-Kyu;KOH, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.3
    • /
    • pp.454-460
    • /
    • 2015
  • The present study is undertaken to evaluate the effect of volume fraction on the results of Charpy impact test for the rubber matrix filled with nano sized silica particles composites. The Charpy impact tests are conducted in the temperature range $0^{\circ}C$ and $-10^{\circ}C$. The range of volume fraction of silica particles tested are between 11% to 25%. The critical energy release rate $G_{IC}$ of the rubber matrix composites filled with nano sized silica particles is affected by silica volume fraction and it is shown that the value of $G_{IC}$ decreases as volume fraction increases. In regions close to the initial crack tip, fracture processes such as matrix deformation, silica particle debonding and delamination, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact fracture surfaces.

Strengthening of cement blended soft clay with nano-silica particles

  • Thomas, Geethu;Rangaswamy, Kodi
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.505-516
    • /
    • 2020
  • In recent years, Nano-technology significantly invaded the field of Geotechnical engineering, particularly in soil stabilisation techniques. Stabilisation of weak soil is envisioned to modify various soil characteristics by the addition of natural or synthetic materials into the virgin soil. In the present study, laboratory experiments were executed to investigate the influence of nano-silica particles in the consistency limits, compressive strength of the soft clay blended with cement. The results revealed that the high compressibility behaviour of soft clay modified to medium-stiff condition with fewer dosages of cement and nano-silica. The mechanism behind the strength development is verified with the previous researches as well as from Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction test (XRD) and Scanning Electron Microscopy (SEM) analysis. Based on the results, the presence of nano-silica in soft clay blended with cement has a positive effect on the behaviour of soil. This technique proves to be very economical and less detrimental to the environment.

The Control of Electrostatic Characteristics in Toner Type Paper-like Display

  • Lee, Sung-Guk;Kwon, Soon-Hyung;Cho, Won-Ki;Song, Moon-Bong;Kim, Young-Woon
    • Journal of Information Display
    • /
    • v.8 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • The toner type paper-like display (PLD) has been developed with two polymer particles having opposite polarity composed of polymer, colorant and external additives (nano-sized silica). Nano-sized silica with triboelectric charge was used for the charge control agent (CCA) and influenced on the electrostatic properties of the silica-coated polymer particles. The surface morphology and the cohesiveness of silica-coated polymer particles were changed with the silica coating time. From these results, it was verified that the PLD cell using silica-coated particles (200 seconds) shows a good white appearance and low driving voltage.

Convective Deposition of Silica Nano-Colloidal Particles and Preparation of Anti-Reflective Film by Controlling Refractive Index (콜로이드 실리카 나노입자의 부착에 의한 반사방지막 제조 및 굴절율 조절)

  • Hwang Yeon;Prevo Brian;Velev Orlin
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.285-292
    • /
    • 2005
  • Anti-reflection film was coated by using spherical silica nano colloids. Silica colloid sol was reserved between two inclined slide glasses by capillary force, and particles were convectively stacked to form a film onto the substrate as the water evaporates. As the sliding speed increased, the thickness of the film decreased and the wavelength at the maximum transmittance decreased. The microstructure observed by SEM showed that silica particles were nearly close packed, which enabled the calculation of the effective refractive index of the film. The film thickness was measured by proffer and calculated from the wavelength of maximum transmittance and the effective refractive index. The effective refractive index of the film could be controlled by a subtle controlling of the coating speed and by mixing two different sized silica particles. When the 100 nm and 50 m particles were mixed at 4:1-5:1 volume ratio, the maximum transmittance of $95.2\%$ for one-sided coating was obtained. This is the one that has increased by $3.8\%$ compared to bare glass substrate, and shows that $99.0\%$ of transmittance or $1.0\%$ of reflectance can be achieved by the simple process if both sides of the substrate are coated.

A New Stationary Phase Prepared from Ground Silica Monolith Particles by Reversible Addition-Fragmentation Chain Transfer Polymerization

  • Lee, Seung-Mi;Zaidi, Shabi Abbas;Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2943-2948
    • /
    • 2010
  • Silica monolith powders were prepared by a new procedure where ground powders of proper size distribution were obtained without sieving. An initiator was attached to this ground monolith and polystyrene was bound by reversible addition-fragmentation chain transfer polymerization to give a new stationary phase. The separation efficiency of this phase was found better than that of the polystyrene bound phase based on conventional silica particles and that of the C18 bound silica monolith powders.

Inhibition effect of silica nanoparticle on the oxygen uptake rate of activated sludge (실리카 나노입자에 의한 활성슬러지 활성도 저해 효과 분석)

  • Lee, Soo Mi;Cho, Jin Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Nanotechnology has become one of the fastest developing technologies and recently applied to a variety of industries. Thus, increasing number of nano materials including various nanoparticles would be discharged into wastewater and consequently entering a biological wastewater treatment process. However, the impact of the nano particles on biological wastewater treatment has not been estimated intensively. In this research, we investigated the effect of silica nanoparticle on the oxygen uptake rates (OURs) of activated sludge used in a conventional wastewater treatment process. The inhibition (%) values were estimated from the results of OURs experiments for the silica nanoparticles with various sizes of 10-15, 45-50, and 70-100 nm and concentrations of 50, 250, and 500 ppm. As results, the inhibition value was increased as the size of silica nano particles decreased and the injected concentration increased. The maximum inhibition value was investigated as 37.4 % for the silica nanoparticles with the size of 45-50 nm and concentration of 50 ppm. Additionally, the effect of size and concentration on the inhibition should be considered cautiously in case that the aggregation of particles occurred seriously so that the size of individual particles was increased in aquatic solution.

A Test of Antifungal Spray Formulation Containing Nanosized Silica-Silver Particles Prepared by Using Gamma Irradiation for Practical Use to Control Indoor Fungi (감마선 조사에 의해 제조된 나노-실리카은 유무기복합 입자를 포함한 항진균성 스프레이 제제의 생활환경 저해균에 대한 실용성 검토)

  • Kim, Seong-Ho;Park, Hae-Jin;Kim, Hwa-Jung;Park, Hae-Jun
    • Journal of Radiation Industry
    • /
    • v.2 no.3
    • /
    • pp.149-154
    • /
    • 2008
  • The present study described an antimicrobial spray composition comprising nanosized silica-silver particles, in which nano-silver is bound to silica molecules and a water-soluble polymer, the nanosized silica-silver particles prepared by irradiating a solution comprising a silver salt, silicate and the water-soluble polymer with radiation rays. According to a surfactant addition, the compositions were not turbid and were colorless. Also samples (cotton fabrics and wallpaper) were treated with the compositions also did not cause any stains even after drying under sunshine and at $80^{\circ}C$. Our results suggested that the spray formulation product was of practical use to control indoor fungi.