References
- Hjerten, S.; Liao, J. L.; Zahang, R. J. Chromatogr. 1989, 473, 273-275 https://doi.org/10.1016/S0021-9673(00)91309-8
- Svec, F.; Frechet, J. M. L. Anal. Chem. 1992, 64, 820-822 https://doi.org/10.1021/ac00031a022
- Zou, H.; Huang, X.; Ye, M.; Luo, Q. J. Chromatogr. A 2002, 954, 5-32 https://doi.org/10.1016/S0021-9673(02)00072-9
- Siouffi, A. M. J. Chromatogr. A 2003, 1000, 801-818 https://doi.org/10.1016/S0021-9673(03)00510-7
- Cabrera, K. J. Sep. Sci. 2004, 27, 843-852 https://doi.org/10.1002/jssc.200401827
- Ching, Q. C.; Svec, F.; Frechet, J. M. L. Anal. Chem. 1993, 65, 2243-2248 https://doi.org/10.1021/ac00065a013
- Li, Y. M.; Liao, J. L.; Nakazato, K.; Hjerten, S. Anal. Biochem. 1994, 223, 153-158 https://doi.org/10.1006/abio.1994.1561
- Elicson, C.; Liao, J. L.; Nakazato, K.; Hjerten, S. J. Chromatogr. A 1997, 767, 33-41 https://doi.org/10.1016/S0021-9673(97)00008-3
- Li, W.; Fries, D. P.; Malik, A. J. Chromatogr. A 2004, 1044, 23-52 https://doi.org/10.1016/j.chroma.2004.04.079
- Cheong, W. J.; Kang, G. W.; Lee, W. L.; Yoo, J.-S. J. Liq. Chrom. & Rel. Technol. 2002, 25, 1367-1378 https://doi.org/10.1081/JLC-120004752
- Cheong, W. J.; Seo, Y. J.; Park, S. T.; Kang, G. W. Bull. Korean Chem. Soc. 2006, 27, 1059-1062 https://doi.org/10.5012/bkcs.2006.27.7.1059
- Seo, Y. J.; Kang, G. W.; Park, S. T.; Moon, M.; Park, J. H.; Cheong, W. J. Bull. Korean Chem. Soc. 2007, 28, 999-1004 https://doi.org/10.5012/bkcs.2007.28.6.999
- Ko, J. H.; Baik, Y. S.; Park, S. T.; Cheong, W. J. J. Chromatogr. A 2007, 1144, 269-274
- Motokawa, M.; Kobayashi, H.; Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Jinnai, H.; Hosoya, K.; Ikegami, T.; Tanaka, N. J. Chromatogr. A 2002, 961, 53-63 https://doi.org/10.1016/S0021-9673(02)00133-4
- Moriyama, H.; Anegayama, M.; Komiya, K.; Kato, Y. J. Chromatogr. A 1995, 691, 81-89 https://doi.org/10.1016/0021-9673(94)00744-T
- Wu, N.; Dempsey, J.; Yehl, P. M.; Dovletoglou, A.; Ellison, D.; Wyvratt, J. Anal. Chim. Acta 2004, 523, 149-156 https://doi.org/10.1016/j.aca.2004.07.069
Cited by
- Ground Organic Monolith Particles Having a Large Volume of Macropores as Chromatographic Separation Media vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.2033
- -bound porous silica monolith particles as a low-cost high-performance liquid chromatography stationary phase with an excellent chromatographic performance vol.37, pp.23, 2014, https://doi.org/10.1002/jssc.201400811
- Cheap C18-modified Silica Monolith Particles as HPLC Stationary Phase of Good Separation Efficiency vol.36, pp.6, 2015, https://doi.org/10.1002/bkcs.10320
- Production of Raw and Ligand-modified Silica Monolith Particles in an Enhanced Scale and their Application in High Performance Liquid Chromatography vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11203
- A New Stationary Phase Prepared from Ground Silica Monolith Particles by Reversible Addition-Fragmentation Chain Transfer Polymerization vol.31, pp.10, 2008, https://doi.org/10.5012/bkcs.2010.31.10.2943
- Ground Organic Monolith Particles as Chromatographic Separation Media vol.34, pp.1, 2008, https://doi.org/10.5012/bkcs.2013.34.1.291
- Porous Silica Particles As Chromatographic Separation Media: A Review vol.35, pp.12, 2008, https://doi.org/10.5012/bkcs.2014.35.12.3465
- Demonstration of high separation efficiency for polystyrene-modified sub-1 µm particles originating from silica monolith under isocratic elution mode in liquid chromatography vol.42, pp.19, 2008, https://doi.org/10.1080/10826076.2019.1665539
- Fabrication of permanent silver cement frit at the inlet of micro-columns: a significant progress toward realization of disposable micro-columns vol.32, pp.1, 2020, https://doi.org/10.1556/1326.2018.00530
- Ground Organic Particles of ca. 3 μm Size as Chromatographic Separation Media in High Performance Liquid Chromatography vol.83, pp.6, 2008, https://doi.org/10.1007/s10337-020-03894-z