• Title/Summary/Keyword: Nano-processing

Search Result 561, Processing Time 0.028 seconds

Improvement of $CO_2$Decomposition by Impregnating Noble Metals to Nano-size (Ni, Zn)-ferrites (귀금속 첨가에 의한 나노 (Ni, Zn)-페라이트의 $CO_2$분해 향상)

  • Kim, Jeong-Sik;An, Jeong-Ryul;Gang, Gye-Myeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.846-850
    • /
    • 2001
  • In the present study, nano-size powders of ternary ferrites, $Ni_{0.5}Zn_{0.5}Fe_2O_4$, as the potential catalysts of $CO_2$decomposition, were prepared by the wet processing of hydrothermal synthesis and coprecipitation method, and the catalyzing effects of impregnation of the noble metals, Pt and Pd, onto $Ni_{0.5}Zn_{0.5}Fe_2O_4$for the $CO_2$decomposition were investigated. XRD results of the synthesized ferrites showed a typical spinel structure of ferrite and the particle size was very small as about 6~10 nm. BET surface area of the ternary ferrites was not affected by the impregnation of Pt and Pd. The reactivity of the $CO_2$decomposition to carbon was improved by the impregnation of the noble metals of Pd and Pt. The effect of Pd-impregnation on the $CO_2$decomposition rate was higher than Pt-impregnation.

  • PDF

Reactive Dyeing of Bio Pretreated Cotton Knitted Fabrics

  • Ayoub, Alvira;Ali, Iftikhar;Son, Eun Jong;Jeong, Sung Hoon
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.283-289
    • /
    • 2014
  • This study describes the feasibility and optimization of reactive dyeing on bio treated cotton knitted fabrics. For this, cotton knitted fabrics distinctly with two different enzymes, alkaline Pectinases(Scourzyme $L^{(R)}$) and Pectate lyases(Bactosol Co. ip $liquor^{(R)}$). In this way by increasing the concentration and processing temperature, the access of enzymes towards the fatty and waxy substrate was found to be accelerated. To achieve higher absorbency and whiteness index, a series of experiments was carried out to assure that Pectate lyases enzymes possesses high access towards the fats and waxes at high temperature. To this end, cotton knitted fabrics was dyed without oxidative bleaching step. The Pectate lyases scoured and dyed fabrics showed less color difference when 2% dye shade is used. The fabrics pre-scoured with Pectate lyases showed good the light and washing fastness properties, compared to the conventional and Pectinases dyed fabrics. However pectinases enzymes showed lower activity at high temperature, caused poor wettability and whiteness index of fabrics. The improvement of the accessibility of enzyme to the pectin at higher temperature Pectate lyases treatment before dyeing was found to be useful for subsequent pectin degradation in cotton knitted fabrics.

Investigation of friction effects between needles patterned using laser and elastomer (레이저에 의해 패터닝 된 바늘과 탄성중합체와의 마찰 효과)

  • Kim, Jae-Gu;Ro, Seung-Kook;Park, Jong-Kweon;Cho, Sung-Hak;Whang, Kyung-Hyun
    • Laser Solutions
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • The friction force of patterned needle in elastomer have been investigated to verify the application for bio and plastic industry. The micro pattern on the needle surface were prepared by 266 nm, 20 ns laser and 800 nm, 220 fs laser, which were able to generate the different surface roughness. The friction force was measured by the load cell of 10 N capacity. As the results, the friction force of no patterned needle is almost constant during the needle penetrates the silicone rubber sample. However, the needle having asperities shows the variation of the friction force. The higher the surface roughness is, the smaller the friction force is until the surface roughness is very high. In our experiment conditions, the reduction of the friction force by 20 % compared to no pattern needle was achieved with straight and $50{\mu}m$ discrete line generated by 266 nm, 20 ns laser.

  • PDF

Effect of Coating Layer Hardness on Frictional Characteristics of Diesel Engine Piston Ring (디젤엔진 피스톤 링 코팅 층의 경도에 따른 마찰특성)

  • Jang, J.H.;Joo, B.D.;Lee, H.J.;Kim, E.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.465-470
    • /
    • 2009
  • The frictional behaviors of Cermets/Cr-Ceramics and Cu-Al coatings of piston ring were investigated. Friction tests were carried out by pin-on-disk test and materials properties of coating layer were analyzed by nano indentation tester. The effect of surface roughness of cylinder liner on the friction coefficient was analyzed. This study provided tribological data of hard and soft piston ring coatings against cylinder liner. The surface roughness does exert an influence on the average friction coefficient, with smoother surfaces generally yielding lower friction coefficients. In case of hard-coating, the scratch depth, width and pile-up height had close relationship with hardness. So the scratch width, depth and pile-up height increases with decreasing friction coefficient. But in case of soft-coating, the friction coefficients are strongly dependent on the morphological characteristics such as, scratch depth, width, pile-up height and elastic modulus.

Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Solid Oxide Fuel Cell Anode Fabricated by Spark Plasma Sintering (플라즈마 소결법을 이용한 고체산화물 연료전지 음극 제조 시 소결온도에 따른 미세구조 및 물성평가)

  • Song, Byung Ju;Kim, Ka Ram;Kim, Hye Sung
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.425-431
    • /
    • 2013
  • Microstructural and mechanical properties of Ni-YSZ fabricated using SPS processing have been investigated at various sintering temperatures. Our study shows samples to be applied as a SOFC anode have the proper porosity of 40% and high hardness when processed at $1100^{\circ}C$. These results are comparable to the values obtained at $100-200^{\circ}C$ higher sintering temperature reported by others. This result is important because when the fabrication processes are performed above $1100^{\circ}C$, the mechanical property starts to decrease drastically. This is caused by the fast grain coarsening at the higher temperature, which initiates a mismatch between thermal expansion coefficients of Ni and YSZ and induces cracks as well.

Synthesis of Nanopowders by Hydrothermal Method and their Application to Dye-sentisized Solar Cell Materials (수열합성을 이용한 나노분말 합성 및 연료감응태양전지 응용)

  • Lim, JinYoung;Ahn, Jeongseok;Ahn, Jung-Ho
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.309-315
    • /
    • 2018
  • In the present work, we synthesize nano-sized ZnO, $SnO_2$, and $TiO_2$ powders by hydrothermal reaction using metal chlorides. We also examine the energy-storage characteristics of the resulting materials to evaluate the potential application of these powders to dye-sensitized solar cells. The control of processing parameters such as pressure, temperature, and the concentration of aqueous solution results in the formation of a variety of powder morphologies with different sizes. Nano-rod, nano-flower, and spherical powders are easily formed with the present method. Heat treatment after the hydrothermal reaction usually increases the size of the powder. At temperatures above $1000^{\circ}C$, a complete collapse of the shape occurs. With regard to the capacity of DSSC materials, the hydrothermally synthesized $TiO_2$ results in the highest current density of $9.1mA/cm^2$ among the examined oxides. This is attributed to the fine particle size and morphology with large specific surface area.

Properties of Piezoelectric Generators and K0.5Bi0.5TiO3 Films Prepared by Sol-Gel Method (졸-겔법에 의해 제조한 K0.5Bi0.5TiO3 막과 압전발전기의 특성)

  • Lee, Young-Ho;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.649-656
    • /
    • 2021
  • K0.5Bi0.5TiO3 (KBT) thin films were prepared by sol-gel processing for future use in piezoelectric generators. It is believed that the annealing temperature of films plays an important role in the output performance of piezoelectric generators. KBT films prepared on Ni substrates were annealed at 500 ~ 700 ℃. Tetragonal KBT films were formed after annealing process. As the annealing temperature increased, the grain size of KBT films increased. KBT thin films show piezoelectric constant (d33) from 23 to 41 pC/N. The increase of grain size in KBT films brought about output voltage and current in the KBT generators. Also, the increase in the displacement of specimens during bending test resulted in increases in output voltage and current. Although KBT generators showed lower output power than those of generators prepared using NBT films, as reported previously, the KBT films prepared by sol-gel method show applicability as piezoelectric thin films for lead-free nano-generators, along with NBT films.

High System Performance with Plasmonic Waveguides and Functional Devices

  • Kwong, Wing-Ying
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.319-326
    • /
    • 2010
  • Photonics offers a solution to data communication between logic devices in computing systems; however, the integration of photonic components into electronic chips is rather limited due to their size incompatibility. Dimensions of photonic components are therefore being forced to be scaled down dramatically to achieve a much higher system performance. To integrate these nano-photonic components, surface plasmon-polaritons and/or energy transfer mechanisms are used to form plasmonic chips. In this paper, the operating principle of plasmonic waveguide devices is reviewed within the mid-infrared spectral region at the 2 ${\mu}m$ to 5 ${\mu}m$ range, including lossless signal propagation by introducing gain. Experimental results demonstrate that these plasmonic devices, of sizes approximately half of the operating free-space wavelengths, require less gain to achieve lossless propagation. Through optimization of device performance by means of methods such as the use of new plasmonic waveguide materials that exhibit a much lower minimal loss value, these plasmonic devices can significantly impact electronic systems used in data communications, signal processing, and sensors industries.

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

Analysis of Densification Behavior of Nano Cu Powders during Cold Isostatic Pressing (나노 구리 분말의 냉간정수압 공정에 대한 치밀화 거동 해석)

  • 윤승채;김형섭;이창규
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.341-347
    • /
    • 2004
  • In the study, a hybrid constitutive model for densification of metallic powders was applied to cold isostatic pressing. The model is based on a pressure-dependent plasticity model for porous materials combined with a dislocation density-based viscoplastic constitutive model considering microstructural features such as grain size and inter-particle spacing. Comparison of experiment and calculated results of microscale and nanoscale Cu powders was made. This theoretical approach is useful for powder densification analysis of various powder sizes, deformation routes and powder processing methods.