• Title/Summary/Keyword: Nano-morphology

Search Result 681, Processing Time 0.034 seconds

WSR Study of Particle Size, Concentration, and Chemistry near Soot Inception (WSR 초기수트 조건에서의 입자 크기, 농도 및 화학적 특성)

  • Lee, Eui-Ju;Mulholland, George. W.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1298-1303
    • /
    • 2004
  • The characteristics of soot near the soot inception point for an ethene-air flame was carried out in a WSR (well-stirred reactor). The new sampling tool like the temperature controlled filter system was introduced to minimize the condensation during sampling. The new analysis tools applied include the real time size distribution analysis with the Nano-DMA, particle size by transmission electron microscopy, C/H analysis, g filter analysis, and thermogravimetric analysis using both non-oxidative and oxidative pyrolysis. The WSR can generate young soot particles that can be collected and examined to gain insight into inception. For the current conditions, soot does not form for ${\Phi}=1.9$, inception occurs at or before ${\Phi}=2.0$, and inception combined with soot surface growth and/or coagulation occurs for ${\Phi=2.1}$. The filter samples for ${\Phi}$=1.9 are composed of volatile compounds that evolve at relatively low temperatures when heated in the presence or absence of $O_2$. The samples collected from the WSR at ${\Phi}=2.0$ and ${\Phi}=2.1$ are precursor-like in morphology and size. They have higher C/H ratios and lower organic percentages than precursor particles, but they are clearly not fully carbonized soot. The WSR PAH distribution is similar to that in young soot from inverse flames.

  • PDF

Effect of Microwave Irradiation on Morphology and Size of Anatase Nano Powder: Efficient Photodegradation of 4-Nitrophenol by W-doped Titania

  • Shojaei, Abdollah Fallah;Loghmani, Mohammad Hassan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3981-3986
    • /
    • 2012
  • Anatase nanocrystalline and its tungsten-doped (0.4, 2, and 4 mol %) powders have been synthesized by microwave irradiation through hydrolysis of titanium tetra-isopropoxide (TIP) in aqueous solution. The materials are characterized by XRD, Raman, SEM-EDX, TEM, FT-IR and UV-vis techniques. The nanocrystalline $TiO_2$ particles are 30 nm in nature and doping of tungsten ion decreases their size. As seen in TEM images, the crystallites of W (4 mol %) doped $TiO_2$ are small with a size of about 10 nm. The photocatalytic activity was tested on the degradation of 4-nitrophenol (4-NP). Catalytic activities of W-doped and pure $TiO_2$ were also compared. The results show that the photocatalytic activity of the W-doped $TiO_2$ photocatalyst is much higher than that of pure $TiO_2$. Degradation decreases from 96 to 50%, during 115 min, when the initial 4-NP concentration increases from 10 to 120 ppm. Maximum degradation was obtained at 35 mg of photocatalyst.

Detection of Avidin Based on Rugate-structured Porous Silicon Interferometer

  • Koh, Young-Dae;Kim, Sung-Jin;Park, Jae-Hyun;Park, Cheol-Young;Cho, Sung-Dong;Woo, Hee-Gweon;Ko, Young-Chun;Sohn, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2083-2088
    • /
    • 2007
  • Biosensor based on rugate PSi interferometer for the detection of avidin has been described. Rugate PSi fabricated by applying a computer-generated pseudo-sinusoidal current waveform has been prepared for the application as a label-free biosensor based on porous silicon interferometer. The fabrication, optical characterization, and surface derivatization of a rugate PSi has been described. The method to fabricate biotinderivatized rugate PSi has been investigated. The surface and cross sectional morphology of rugate PSi are obtained with SEM. FT-IR spectroscopy is used to characterize the oxidation and functionalization reaction of rugate PSi sample. Binding of the avidin into the biotin-derivatized rugate PSi induces a change in refractive index. A red-shift of reflectivity by 18 nm in the reflectivity spectrum is observed, when the biotin-modified rugate PSi was exposed to a flow of avidin.

Titanium Containing Solid Core Mesoporous Silica Shell: A Novel Efficient Catalyst for Ammoxidation Reactions

  • Venkatathri, N.;Nookaraju, M.;Rajini, A.;Reddy, I.A.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.143-148
    • /
    • 2013
  • Novel titanium containing solid core mesoporous shell silica has been synthesized by using octadecyltrichloro silane and triethylamine. The synthesized material was characterized by various physicochemical techniques. The mesoporous character of the material has been revealed from PXRD studies. The presence of octadecyltrichloro silane and triethylamine in the sample has been confirmed from EDAX studies. TG/DTA analysis reveals the thermal characteristics of the synthesized material. The presence of titanium in the frame work and its coordination state has been studies by UV-vis DR studies and XPS analysis. Chemical environment of Si in the framework of the material has been studied by $^{29}SiMASNMR$ studies. The surface area of the material is found to be around $550\;m^2g^{-1}$ and pore radius is of nano range from BET analysis. The spherical morphology and particle size of the core as well as shell has been found to be 300 nm and 50 nm respectively from TEM analysis. The catalytic application of this material towards the synthesis of caprolactam from cyclohexanone in presence of hydrogen peroxide through ammoxidation reaction has been investigated. The optimum conditions for the reaction have been established. The plausible mechanism for the formation of core silica and conversion of cyclohexanone has been proposed.

Assembly of chemically reduced graphene oxide with folic acid functionalized with pyrene moieties and electrochemical sensing of folate receptors

  • Kwon, Binhee;Park, Jongyeap;Jeong, Woojun;Jeong, Guembi;Ryu, Hyeong Seon;Paoprasert, Peerasak;Park, Sung Young;In, Insik
    • Carbon letters
    • /
    • v.27
    • /
    • pp.26-34
    • /
    • 2018
  • To formulate folate receptor (FR)-specific graphene-based electrochemical electrodes, a folic acid (FA) derivative attached with two pyrene molecules on the glutamate tail of FA was synthesized. The resulting pyrene-functionalized FA (FA-Py) presented the spontaneous noncovalent binding on chemically reduced graphene oxides (rGO) through an ${\pi}-{\pi}$ interaction. Ultrathin morphology, high water-resistance, and preservation of intact FR-specific pteroates from the rGO/FA-Py assembly allow this assembly to be exploited as robust and FR-specific electrochemical electrode materials. The limits of detecting rGO/FA-Py modified electrodes were found to be as low as 3.07 nM in FR concentrations in cyclic voltammetry analysis.

Preparation of BaTiO3/Poly(vinylidene fluoride) 0-3 Composite Films for Dielectric Applications

  • Hwang, Kyu-Seog;Kang, Jong-Min;Lee, June-Ho;Hwangbo, Seung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1692-1696
    • /
    • 2018
  • Ferroelectric $BaTiO_3$/poly(vinylidene fluoride) (PVDF) nanocomposite films were successfully prepared by mixing $BaTiO_3$ nano-particles into PVDF solution dissolved in dimethylformamide under ultrasonification. The mixture was casted onto glass petri dish and then annealed at $100^{\circ}C$ for 12 h in vacuum dry oven. Crystal structure and surface morphology of the samples were analyzed by using an X-ray diffraction analysis and a field emission-scanning electron microscope, respectively. The relative dielectric permittivity and loss tangent were determined in the frequency range of 50 Hz to 1 MHz. For the $BaTiO_3/PVDF$ nanocomposites, the entire diffraction peaks match those indicated by standard $BaTiO_3$ perovskite structure. The FE-SEM image reveals the homogeneity of the $BaTiO_3$ nanopowder distribution and also predominant 0-3 connectivity. All results show that the dielectric properties of the nanocomposite films are desirable and the fabrication technique for preparing the $BaTiO_3/PVDF$ nanocomposites has a potential in the electronic applications.

Synthesis of Platinum Nanoparticles by Liquid Phase Reduction (액상환원공정을 이용한 백금 나노 입자의 합성)

  • Lee, Jin-Ho;Kim, Se-Hoon;Kim, Jin-Woo;Lee, Min-Ha;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • In this study, Platinum(Pt) nanoparticles were synthesized by using polyol process which is one of the liquid phase reduction methods. Dihydrogen hexachloroplatinate (IV) hexahydrate $(H_2PtCl_6{\cdot}6H_2O)$, as a precursor, was dissolved in ethylene glycol and silver nitrate ($AgNO_3$) was added as metal salt for shape control of Pt particle. Also, polyvinylpyrrolidone (PVP), as capping agent, was added to reduce the size of particle and to separate the particles. The size of Pt nanoparticles was evaluated particle size analyzer (PSA). The size and morphology of Pt nanoparticles were observed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Synthesized Pt nanoparticles were studied with varying time and temperature of polyol process. Pt nanoparticles have been successfully synthesized with controlled sizes in the range 5-10 and 20-40 nm with cube and multiple-cube shapes.

Bio-toxicity of Titanium Dioxide Nano Particles (P-25) in Zebrafish Development Stage (Zebrafish 발생기에서 $TiO_2(P-25)$ 나노 입자의 생물 독성)

  • Yeo, Min-Kyeong;Jo, Yoon-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.189-196
    • /
    • 2007
  • [ $TiO_2$ ] is widely used because it is non-toxic. Recently, however, nanometer size $TiO_2$ particles (P-25) have been produced and used to increase the photo catalysis efficiency. Nanometer-sized $TiO_2$ is efficient, but due to its small size ($20{\sim}30\;nm$), it can flow into ecosystems and into cells. Thus, it may affect human health. Additionally, $TiO_2$ can produce a second contaminant, OH-radical, which is a health risk for all living organisms during photo degradation reaction. Hence, when nanometer-sized $TiO_2$ flows into natural streams and attaches to living organisms, it will create health risks. We investigated the biological toxicity of this condition in zebrafish embryos. We observed abnormal morphology, hatching rate, and measured the catalase activity to determine anti-oxidation at 100 post fertilization hours. Zebrafish were somewhat affected by $TiO_2$ nanometer sized particles under UV-A (a condition similar to sunlight). Powdered $TiO_2$ is toxic to the zebrafish fly. Even without light, $TiO_2$ particles attached to embryos and flies, having an effect on both.

Photocatalytic Degradation of Gaseous Formaldehyde and Benzene using TiO2 Particulate Films Prepared by the Flame Aerosol Reactor

  • Chang, Hyuksang;Seo, Moonhyeok
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.215-221
    • /
    • 2014
  • Nano-sized $TiO_2$ particles were produced by a premixed flame aerosol reactor, and they were immobilized on a mesh-type substrate in form of particulate film. The reactor made it possible maintaining the original particulate characteristics determined in the flame synthetic process. The particulate morphology and crystalline phase were not changed until the particulate were finally coated on the substrate, which resulted in the better performance of the photocatalytic conversion of the volatile organic compounds (VOCs) in the ultraviolet $(UV)-TiO_2$ system. In the flame aerosol reactor, the various specific surface areas and the anatase weight fractions of the synthesized particles were obtained by manipulating the parameters in the combustion process. The performance of the $TiO_2$ particulate films was evaluated for the destruction of the VOCs under the various UV irradiation conditions. The decomposition rates of benzene and formaldehyde under the irradiation of UV-C of 254 nm in wavelength were evaluated to check the performance of $TiO_2$ film layer to be applied in air quality control system.

Dependences of die Power ratio on the properties in GZOB/Au multilayers (전력비 변화에 따른 Au Multilayer 위에 증착한 GZOB 박막의 특성)

  • Lee, Jong-Hwan;Lee, Kyu-Il;Kim, Bong-Suk;Lee, Tae-Yong;Kang, Hyun-Il;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.144-144
    • /
    • 2007
  • Effects of power ratio on the electrical and optical properties of Au based Ga-, B- codoped ZnO(GZOB) thin films were investigated. GZOB thin films on Au based PC flexible substrate were deposited at various power in the range from 50 to 125 W by DC magnetron sputtering. Au layer was fabricated to achieve good electrical conductivity. The presence of additional boron impurity leads to improve structural defects. Thus, the c-axis orientation along (002) plane was enhanced with the increasing of power ratio and the surface morphology of the films showed a homogeneous and nano-sized microstructure. GZOB films grown at 125W were investigated a low resistivity value of $1{\times}10^{-3}{\Omega}cm$ and a visible transmission of 80% with a thickness of 300nm.

  • PDF