• Title/Summary/Keyword: Nano-morphology

Search Result 681, Processing Time 0.032 seconds

Characteristics of Nafion Membranes with Pd Thin Films Deposited by DC Magnetron Sputtering Technique (DC마그네트론 스퍼터링으로 Pd박막 입힌 Nafion막의 특성)

  • Hwang, Gi-Ho;Cho, Won-Il;Cho, Byung-Won;Yoon, Sung-Ryul;Ha, Heung-Yong;Oh, In-Hwan;Kim, Kwang-Bum
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.68-73
    • /
    • 2002
  • Modified polymer electrolyte membranes were fabricated by the applying dc magnetron sputter-deposited Pd thin layers on the surface of the $Nafion^{TM}$ membranes in argon atmosphere. The Pd thin films were characterized by investigating its morphology, methanol permeability, and protonic conductivity. The performance of a direct methanol fuel cell(DMFC) with the modifed polymer electrolyte membrane was also tested by the measurement of its currents and voltages under flowing methanol. The Pd thin film could be a barrier layer to methanol crossover, but the protonic conductivity of the modified polymer membrane was reduced. By using the modified polymer eletrolyte membranes, both the methanol permeability and the protonic conductivity were decreased with increasing the thickness of Pd thin film. However, the performances of DMFC were almost independent on the thickness of Pd thim films. The efffcts of methanol concentration in a feeding fuels on the protonic conductivity and the cell performance were also investigated.

Effects of SIS Sponge and Bone Marrow-Derived Stem Cells on the Osteogenic Differentiation for Tissue Engineered Bone (SIS 스폰지와 골수유래줄기세포를 이용한 조직공학적 골분화 유도)

  • Park Ki Suk;Jin Chae Moon;Yun Sun Jung;Hong Keum Duck;Kim Soon Hee;Kim Moon Suk;Rhee John M.;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.501-507
    • /
    • 2005
  • Small intestinal submucosa (SIS) had been widely used as a biomaterial without immune rejection responses. SIS sponges prepared by crosslinking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). SIS powders dissolved in $3\%(v/v)$ acetic acid aqueous solution for 48hrs and freeze-dried. EDC solution ($H_2O$ : ethanol = 5 : 95) as a crosslink agent was used in concentration of 100mM. In vitro, rat-BMSCs seeded in SIS sponges and induced the osteogenesis for 28 days. We have characterized the osteogenic potential of rat-BMSCs in SIS sponges by alkaline phosphatase activity(ALP), n assay, SEM and RT-PCR for osteogenic phenotype. In SEM, all morphology of SIS sponges was regular and showed interconnected pore structure. By RT-PCR analysis, we observed type I collagen expression. These results demonstrate osteogenic differentiation of rat-BMSCs. In conclusion, we confirmed that the morphology of surface, cross-section, and side of SIS sponges were highly porous with good interconnections between each pores, which can support the surface of cell growth, proliferation, and differentiation. This result indicates that SIS sponge is useful for osteogenesis of BMSCs.

Effect of Pore Structures of a Ti-49.5Ni (at%) Alloy on Bone Cell Adhesion (Ti-49.5Ni (at%)합금의 다공성 구조가 뼈 세포 흡착에 미치는 영향)

  • Im, Yeon-Min;Choi, Jung-Il;Khang, Dong-Woo;Nam, Tae-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.66-70
    • /
    • 2012
  • Ti-Ni alloys are widely used in numerous biomedical applications (e.g., orthodontics, cardiovascular science, orthopaedics) due to their distinctive thermomechanical and mechanical properties, such as the shape memory effect, superelasticity and low elastic modulus. In order to increase the biocompatibility of Ti-Ni alloys, many surface modification techniques, such as the sol-gel technique, plasma immersion ion implantation (PIII), laser surface melting, plasma spraying, and chemical vapor deposition, have been employed. In this study, a Ti-49.5Ni (at%) alloy was electrochemically etched in 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF electrolytes to modify the surface morphology. The morphology, element distribution, crystal structure, roughness and energy of the surface were investigated by scanning electron microscopy (SEM), energy-dispersive Xray spectrometry (EDS), X-ray diffractometry (XRD), atomic force microscopy (AFM) and contact angle analysis. Micro-sized pores were formed on the Ti-49.5Ni (at%) alloy surface by electrochemical etching with 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF. The volume fractions of the pores were increased by increasing the concentration of the HF electrolytes. Depending on the HF concentration, different pore sizes, heights, surface roughness levels, and surface energy levels were obtained. To investigate the osteoblast adhesion of the electrochemically etched Ti-49.5Ni (at%) alloy, a MTT test was performed. The degree of osteoblast adhesion was increased at a high concentration of HF-treated surface structures.

Low temperature synthesis of ZnO nanopowders by the polymerized complex method (착체중합법을 이용한 ZnO 나노분말의 저온합성)

  • 권용재;김경훈;임창성;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.229-233
    • /
    • 2002
  • Nano-sized ZnO particles were successfully synthesized at low temperatures by a polymerized complex method via an organochemical route. The polymeric precursors could be prepared using Zn nitrate hexahydrate and a mixed solution of citric acid and ethylene glycol as a chelating agent and a reaction medium. The polymeric precursors were calcined at temperatures from 300 to $700^{\circ}C$ for 3 h, and evaluated for degree of crystallization process, thermal decomposition, surface morphology and crystallite size. The thermal decomposition and crystallization process were analyzed by TG-DTA, FI-IR and XRD. The morphology and crystallite size of the calcined particles were evaluated by scanning electron microscopy (SEM), transmittance electron microscopy (TEM) and Scherrer's equation. Crystallization of the ZnO particles was detected at $300^{\circ}C$ and entirely completed above $400^{\circ}C$. Particles calcined between 400 and $700^{\circ}C$ showed a uniform size distribution with a round shape. The average particle sizes calcined at $400^{\circ}C$ for 3 hour were 30~40nm showing an ordinary tendency to increase with the temperatures.

Effect of $Y_2O_3$ Nanoparticles on Critical Current Density of $YBa_2Cu_3O_{7-x}$ Thin Films ($Y_2O_3$ 나노입자가 $YBa_2Cu_3O_{7-x}$ 박막의 임계전류밀도에 미치는 영향)

  • Tran, H.D.;Reddy, D.Sreekantha;Wie, C.H.;Kang, B.;Oh, Sang-Jun;Lee, Sung-Ik
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.62-66
    • /
    • 2009
  • Introduction of proper impurity into $YBa_2Cu_3O_{7-x}$ (YBCO) thin films is an effective way to enhance its flux-pinning properties. We investigate effect of $Y_2O_3$ nanoparticles on the critical current density $J_c$ of the YBCO thin films. The $Y_2O_3$ nanoparticles were created perpendicular to the film surface (parallel with the c-axis) either between YBCO and substrate or on top of YBCO, YBCO/$Y_2O_3$/LAO or $Y_2O_3$/YBCO/STO, by pulsed laser deposition. The deposition temperature of the YBCO films were varied ($780^{\circ}C$ and $800^{\circ}C$) to modify surface morphology of the YBCO films. Surface morphology characterization revealed that the lower deposition temperature of $780^{\circ}C$ created nano-sized holes on the YBCO film surface which may behave as intrinsic pinning centers, while the higher deposition temperature produced much denser and smoother surface. $J_c$ values of the YBCO films with $Y_2O_3$ particles were either remained nearly the same or decreased for the samples in which YBCO is grown at $780^{\circ}C$. On the other hand, $J_c$ values were enhanced for the samples in which YBCO is grown at higher temperature of $800^{\circ}C$. The difference in the effect of $Y_2O_3$ can be explained by the fact that the higher deposition temperature of $800^{\circ}C$ reduces intrinsic pinning centers and $J_c$ is enhanced by introduction of artificial pinning centers in the form of $Y_2O_3$ nanoparticles.

  • PDF

Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites

  • Letti, Camila J.;Costa, Karla A.G.;Gross, Marcos A.;Paterno, Leonardo G.;Pereira-da-Silva, Marcelo A.;Morais, Paulo C.;Soler, Maria A.G.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.215-230
    • /
    • 2017
  • The development of hybrid systems comprising nanoparticles and polymers is an opening pathway for engineering nanocomposites exhibiting outstanding mechanical, optical, electrical, and magnetic properties. Among inorganic counterpart, iron oxide nanoparticles (IONP) exhibit high magnetization, controllable surface chemistry, spintronic properties, and biological compatibility. These characteristics enable them as a platform for biomedical applications and building blocks for bottom-up approaches, such as the layer-by-layer (LbL). In this regard, the present study is addressed to investigate IONP synthesised through co-precipitation route (average diameter around 7 nm), with either positive or negative surface charges, LbL assembled with sodium sulfonated polystyrene (PSS) or polyaniline (PANI). The surface and internal morphologies, and electrochemical properties of these nanocomposites were probed with atomic force microscopy, UV-vis and Raman spectroscopy, scanning electron microscopy, cross-sectional transmission electron microscopy, and electrochemical measurements. The nanocomposites display a globular morphology with IONP densely packed while surface dressed by polyelectrolytes. The investigation of the effect of thermal annealing (300 up to $600^{\circ}C$) on the oxidation process of IONP assembled with PSS was performed using Raman spectroscopy. Our findings showed that PSS protects IONP from oxidation/phase transformation to hematite up to $400^{\circ}C$. The electrochemical performance of nanocomposite comprising IONP and PANI were investigated in $0.5mol{\times}L^{-1}$ $Na_2SO_4$ electrolyte solution by cyclic voltammetry and chronopotentiometry. Our findings indicate this structure as promising candidate for potential application as electrodes for supercapacitors.

Synthesis of SiC Nanoparticles by a Sol-Gel Process (나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성)

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.246-249
    • /
    • 2013
  • Nano-sized ${\beta}$-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. $SiO_2$ nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. $SiO_2$ and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at $80^{\circ}C$ in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at $1400{\sim}1500^{\circ}C$ for 4 h with a heating rate of $10^{\circ}C$/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.

Electrochemical Properties of Graphene-vanadium Oxide Composite Prepared by Electro-deposition for Electrochemical Capacitors (양극전착을 통한 그래핀-바나듐 산화물 복합체 제조 및 전기화학적 특성평가)

  • Jeong, Heeyoung;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.131-136
    • /
    • 2015
  • The nanostructural graphene/vanadium oxide (graphene/$V_2O_5$) composite with enhanced capacitance was synthesized by the electro-deposition in 0.5 M $VOSO_4$ solution. The morphology of composites was characterized using scanning electron microscopy (SEM), x-ray diffraction pattern (XRD), and x-ray photoelectron spectroscopy (XPS). The oxidation states of the electro-deposited vanadium oxide was found to be $V^{5+}$ and $V^{4+}$. The morphology of the prepared graphene/$V_2O_5$ composite exhibits a netlike nano-structure with $V_2O_5$ nanorods in about 100 nm diameter, which could lead a better contact between electrolyte an electrode. The composite with a deposition time of 4,000 s exhibits the specific capacitance of $854mF/cm^2$ at a scan rate of 20 mV/s and the capacitance retention of 53% after 1000 CV cycles.

Poly(vinyl alcohol) Nanocomposite Films (II): Thermo-mechanical Properties and Morphology (폴리(비닐 알코올) 나노복합체 필름(II) : 열적-기계적 성질 및 모폴로지)

  • Ham, Shin-Kyun;Jung, Min-Hye;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.545-549
    • /
    • 2006
  • Blends of poly(acrylic acid- co-maleic acid) (PAM) with poly (vinyl alcohol) (PVA) were pre -pared in distilled water PVA/PAM/saponite (PVA/PAM/SPT) nanocomposite films were prepared with various clay contents by using the solution intercalation method. The variations of the dispersion, morphology, and thermo-mechanical properties of the nanocomposites with clay content in the range 0 to 9 wt% were examined. Up to 3 wt% clay loading, the clay particles were homogeneously dispersed in the PVA/PAM blends. However, some agglomerated structures form in the polymer matrix above a clay content of 7 wt%. The thermal stability of the hybrids was increased linearly with increasing the clay loading up to 9 wt%. The maximum strength and modulus were obtained at a clay content of 7 wt%. Thus, the addition of small amounts of clay to the PVA/PAM blends produced PVA/PAM nano-composites with improved the thermo-mechanical properties.

Effect of Additive Ammonium Hydroxide on ZnO Particle Properties Synthesized by Facile Glycol Process

  • Phimmavong, Kongsy;Hong, Seok-Hyoung;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.481-487
    • /
    • 2021
  • ZnO particles are successfully synthesized at 150 ℃ for 30 min using zinc acetate as the Zn source and 1,4-butanediol as solvent using a relatively facile and convenient glycol process. The effect of ammonium hydroxide amounts on the growth behavior and the morphological evolution of ZnO particles are investigated. The prepared ZnO nanoparticle with hexagonal structure exhibits a quasi-spherical shape with an average crystallite size of approximately 30 nm. It is also demonstrated that the morphology of ZnO particles can be controlled by 1,4-butanediol with an additive of ammonium hydroxide. The morphologies of ZnO particles are changed sequentially from a quasi-spherical shape to a rod-like shape and a hexagonal rod shape with a truncated pyramidal tip, exhibiting preferential growth along the [001] direction with increasing ammonium hydroxide amounts. It is demonstrated that much higher OH- amounts can produce a nano-tip shape grown along the [001] direction at the corners and center of the (001) top polar plane, and a flat hexagonal symmetry shape of the bottom polar plane on ZnO hexagonal prisms. The results indicate that the presence of NH4+ and OH- ions in the solution greatly affects the growth behaviors of ZnO particles. A sharp near-band-edge (NBE) emission peak centered at 383 nm in the UV region and a weak broad peak in the visible region between 450 nm and 700 nm are shown in the PL spectra of the ZnO synthesized using the glycol process, regardless of adding ammonium hydroxide. Although the broad peak of the deep-level-emission (DLE) increases with the addition of ammonium hydroxide, it is suggested that the prominent NBE emission peaks indicate that ZnO nanoparticles with good crystallization are obtained under these conditions.