• Title/Summary/Keyword: Nano-morphology

Search Result 681, Processing Time 0.034 seconds

Preparation of Poly(vinyl alcohol)/polypropylene Nano-filter by High Speed Centrifugal Solution Spinning (초고속 용액 원심방사를 이용한 폴리비닐알코올/폴리프로필렌 나노필터 제조)

  • Yang, Seong Baek;Lee, Jungeon;Park, Jae Min;Jung, Jae Hoon;Kim, Tae Young;Kim, Ki Young;Lee, Sang Jun;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.20-26
    • /
    • 2022
  • Centrifugal spinning is an emerging technique for fabricating micro-to-nano-fibers in recent years. To obtain fibers with the desired size and morphology, it is necessary to configure and optimize the parameters used in centrifugal spinning. In this study, it was controlled by changing the solution's concentration (7.5, 10, and 12.5 wt.%) and disk's rotational velocity (6,000, 8,000, and 10,000 rpm) to prepare centrifugal spun nano-filter. The morphological property, air permeability, and dust collection efficiency of the PVA/PP bi-layer nanoweb prepared by centrifugal spun PVA on the PP micron nonwoven substrate are studied using a field emission scanning electron microscope, an air permeability tester, and a filter tester equipment, and the analysis results indicate that it is suitable as a nano-filter when the concentration of PVA solution is 10 wt.% and the rotational velocity of the disk is 8,000 rpm. The resultant reduced diameter and uniform fibers also proved that an excellent dust collection efficiency filter could be made.

Preparation and Characterization of Zaltoprofen-Loaded Polyoxalate Microspheres for Control Release (방출제어를 위한 잘토프로펜이 함유된 폴리옥살레이트 미립구의 제조와 특성)

  • Kim, Kyoung Hee;Lee, Cheon Jung;Jo, Sun A;Lee, Jung Hwan;Jang, Ji Eun;Lee, Dongwon;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.702-710
    • /
    • 2013
  • Zaltoprofen loaded polyoxalate (POX) microspheres were prepared by an emulsion solvent-evaporation/extraction method like oil-in-water (O/W) for sustained release of zaltoprofen. The influence of several preparation parameters such as fabrication temperature, stirring speed, intensity of the sonication, initial drug ratio, molecular weight ($M_w$) of POX, concentration of POX and concentration of emulsifier has been investigated on the zaltoprofen release profiles. Physicochemical properties and morphology of zaltoprofen loaded POX microspheres were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared (FTIR). Through the analyzed results, it was demonstrated that the characteristics of the microspheres greatly affected by the prepared condition. The releases behavior of zaltoprofen was investigated for 10 days in vitro. It was confirmed that the release behavior of zaltoprofen can be controlled by the manufacturing factor of solvent-evaporation/extraction method.

SnO2 Hollow Hemisphere Array for Methane Gas Sensing

  • Hieu, Nguyen Minh;Vuong, Nguyen Minh;Kim, Dojin;Choi, Byung Il;Kim, Myungbae
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.451-457
    • /
    • 2014
  • We developed a high-performance methane gas sensor based on a $SnO_2$ hollow hemisphere array structure of nano-thickness. The sensor structures were fabricated by sputter deposition of Sn metal over an array of polystyrene spheres distributed on a planar substrate, followed by an oxidation process to oxidize the Sn to $SnO_2$ while removing the polystyrene template cores. The surface morphology and structural properties were examined by scanning electron microscopy. An optimization of the structure for methane sensing was also carried out. The effects of oxidation temperature, film thickness, gold doping, and morphology were examined. An impressive response of ~220% was observed for a 200 ppm concentration of $CH_4$ gas at an operating temperature of $400^{\circ}C$ for a sample fabricated by 30 sec sputtering of Sn, and oxidation at $800^{\circ}C$ for 2 hr in air. This high response was enabled by the open structure of the hemisphere array thin films.

Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila

  • Malarkodi, C.;Rajeshkumar, S.;Paulkumar, K.;Jobitha, G. Gnana;Vanaja, M.;Annadurai, G.
    • Advances in nano research
    • /
    • v.1 no.2
    • /
    • pp.83-91
    • /
    • 2013
  • The synthesis of semiconductor nanoparticles is a growing research area due to the prospective applications for the development of novel technologies. In this paper we have reported the biosynthesis of Cadmium sulfide nanoparticles (CdSNPs) by reduction of cadmium sulphate solution, using the bacteria of Serratia nematodiphila. The process for the synthesis of CdS nanoparticles is fast, novel and ecofriently. Formation of the CdS nanoparticles was confirmed by surface Plasmon spectra using UV-Vis spectrophotometer and absorbance strong peak at 420 nm. The morphology of crystalline phase of nanoparticles was determined from Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy and X-ray diffraction (XRD) spectra. The average size of CdS nanoparticles was in the range of 12 nm and the observed morphology was spherical. The results indicated that the proteins, which contain amine groups, played a reducing and controlling responsibility during the formation of CdS nanoparticles in the colloidal solution. Antibacterial activity against some bacteria such as Bacillus subtilis, Klebsiella planticola. CdS nanoparticles exhibiting good bactericidal activity.

An investigation of tribology properties carbon nanotubes reinforced epoxy composites (표면 개질된 탄소나노튜브를 사용한 에폭시 복합재료의 마모특성에 관한 연구)

  • Sulong A.B.;Goak J.C.;Park Joo-Hyuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.663-667
    • /
    • 2005
  • Surface modified carbon nanotubes were applied into the epoxy composites to investigate its tribological property. Carbon nanotubes reinforced epoxy composites were fabricated by casting. Effects to the tribological property of loading concentrations and types of surface modification of carbon nanotubes were investigated under sliding condition using linear reciprocal sliding wear tester. The results show that the small amount of carbon nanotubes into the epoxy exhibited lower weight loss than the pure epoxy. It is concluded that the effect of an enormous aspect ratio of carbon nanotubes surface area which wider than conventional fillers that react as interface for stress transfer. As increased the contents of carbon nanotubes, the weight loss from the wear test was reduced. And the surface modified carbon nanotubes show better tribological property than as produced carbon nanotubes. It is due that a surface modification of carbon nanotubes increases the interfacial bonding between carbon nanotubes and epoxy matrix through chemical bonding. Changes in worn surface morphology are also observed by optical microscope and SEM for investigating wear behaviors. Carbon nanotubes in the epoxy matrix near the surface are exposed, because it becomes the lubricating working film on the worn surface. It reduces the friction and results in the lower surface roughness morphology in the epoxy matrix as increasing the contents of the carbon nanotubes.

  • PDF

Synthesis and Characterization of Nickel Powders by a Solvothermal Processing (용매열 합성법에 의한 니켈 분말 합성 및 특성)

  • Park, Chan;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.246-249
    • /
    • 2016
  • Nickel powders were prepared under solvothermal condition by precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at in a temperature range of $190-250^{\circ}C$ for 6h. The morphology and size of nickel powders were studied as a function of reaction temperature. The synthesis of nickel crystalline particles is possible under a solvothermal conditions in ethylene glycol solution. Characterization of the synthesized nickel powders were studied by XRD, SEM(FE-SEM) and TG/DSC. X-ray diffraction analysis of the synthesized powders indicated the formation of nickel structure after reaction. The average crystalline sizes of the synthesized nickel powders were in the range of 200-1000 nm; and the distribution of the powders was broad. The shape of the synthesized nickel particles was almost spherical. The morphology of synthesized nickel powders changed with reaction condition. It was possible to synthesize nickel powders directly in ethylene glycol without reducing agent.

Polyurethane Nanocomposites with Organoclay (유기화 점토를 이용한 폴리우레탄 나노 복합재료)

  • 안영욱;장진해;박연흠;박종민
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.381-388
    • /
    • 2002
  • The properties of polyurethane (PU) nanocomposites with organoclay have been compared in terms of their thermo-mechanical properties, morphology, and gas permeability. Hexadecylamine-montmorillonite ($C_{16}$-MMT) was used as an organoclay to make PU hybrid films. The properties were investigated as a function of organoclay content (1-4 wt%) in the PU matrix. Transmission electron microscopy (TEM) photographs showed that most clay layers were dispersed homogeneously into the matrix polymer in nano-scale, although some particles of clay were agglomerated. We also found that the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PU hybrid films while gas permeability was reduced. Even at low organoclay content (<5 wt%), the PU nanocomposite showed much better thermo-mechanical properties, and lower gas permeability than pure PU.

Preparation of a Porous Chitosan/Fibroin-Hydroxyapatite Composite Matrix for Tissue Engineering

  • Kim, Hong-Sung;Kim, Jong-Tae;Jung, Young-Jin;Ryu, Su-Chak;Son, Hong-Joo;Kim, Yong-Gyun
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • Chitosan, fibroin, and hydroxyapatite are natural biopolymers and bioceramics that are biocompatible, biodegradable, and resorb able for biomedical applications. The highly porous, chitosan-based, bioceramic hybrid composite, chitosanlfibroin-hydroxyapatite composite, was prepared by a novel method using thermally induced phase separation. The composite had a porosity of more than 94% and exhibited two continuous and different morphologies: an irregularly isotropic pore structure on the surface and a regularly anisotropic multilayered structure in the interior. In addition, the composite was composed of an interconnected open pore structure with a pore size below a few hundred microns. The chemical composition, pore morphology, microstructure, fluid absorptivity, protein permeability, and mechanical strength were investigated according to the composition rate of bioceramics to biopolymers for use in tissue engineering. The incorporation of hydroxyapatite improved the fluid absorptivity, protein permeability, and tenacity of the composite while maintaining high porosity and a suitable microstructure.

Nano-Soot Particle Formation in Ethene/Air Inverse Diffusion Flame (에틸렌/공기 역 확산화염에서의 나노 매연 입자 생성)

  • Lee, Eui-Ju;Shin, Hyun-Joon;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1101-1109
    • /
    • 2004
  • Experimental measurements of flame structure and soot characteristics were performed fur ethene inverse diffusion flames (IDF). IDF has been considered as the excellent flow field to study the incipient soot because soot particle do not experience the oxidation process. In this study, LIF image clarified the reaction zone of IDF with OH signal and PAH distribution. laser light scattering technique also identified the being of soot particle. To address the degree of soot maturing, C/H ratio and morphology of soot sample were investigated. From these measurements, the effect of flow residence time and temperature on soot inception could be suggested, and more details on soot characteristic in the IDF was determined according to fuel dilution and flame condition. The fuel dilution results in a decrease of temperature and enhancement of residence time, but the critical dilution mole fraction is existed for temperature not to effect on soot growth. Also, the soot inception evolved on the specific temperature and its morphology are independent of the fuel dilution ratio of fuel.

Reduction of Contact Resistance Between Ni-InGaAs Alloy and In0.53Ga0.47As Using Te Interlayer

  • Li, Meng;Shin, Geon-Ho;Lee, Hi-Deok;Jun, Dong-Hwan;Oh, Jungwoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.253-256
    • /
    • 2017
  • A thin Te interlayer was applied to a Ni/n-InGaAs contact to reduce the contact resistance between Ni-InGaAs and n-InGaAs. A 5-nm-thick Te layer was first deposited on a Si-doped n-type $In_{0.53}Ga_{0.47}As$ layer, followed by in situ deposition of a 30-nm-thick Ni film. After the formation of the Ni-InGaAs alloy by rapid thermal annealing at $300^{\circ}C$ for 30 s, the extracted specific contact resistivity (${\rho}_c$) reduced by more than one order of magnitude from $2.86{\times}10^{-4}{\Omega}{\cdot}cm^2$ to $8.98{\times}10^{-6}{\Omega}{\cdot}cm^2$ than that of the reference sample. A thinner Ni-InGaAs alloy layer with a better morphology was obtained by the introduction of the Te layer. The improved interface morphology and the graded Ni-InGaAs layer formed at the interface were believed to be responsible for ${\rho}_c$ reduction.