• 제목/요약/키워드: Nano-material

검색결과 2,414건 처리시간 0.034초

나노 시멘트를 이용한 고강도 콘크리트의 특성 (Characteristics of high-performance concrete with nano size cement)

  • 조병완;박종빈;최해윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.13-16
    • /
    • 2005
  • Nanoscale materials are of great interest due to their unique optical, electrical and magnetic properties. Due to the recent amazing achievements in nano technology, new materials were developed. But these nano technology is not apply to the construction part in spite of exellent properties of nano size material. The purpose of this study is to apply to nano technology into building materials. To develop the high performance concrete, nano cement particles is prepared by mechanical method. In the results of this study, the nano silica powder increase effect according to increase of the mixing amount, appeared that compressive strength increased but is limit in increment. For the production of high-strength concrete, nano silica powder was suitable the binder ratio from 20$\%$. And, the compressive strength of concrete are especially dependent on the curing temperature.

  • PDF

전자종이 제작을 위한 FULLERENE/POLYSTYRENE microparticles의 움직임연구 (Studies on electrokinetic motion of FULLERENE/POLYSTYRENE microparticles in liquid crystal medium for electronic paper displays)

  • 김미영;김건지;김성민;조은미;;정준호;지승훈;이명훈;이승희;이기동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.341-342
    • /
    • 2008
  • The dynamics of nano particles in LC medium under an external electric field is of theoretical and technological interest. In this work, the dynamical characteristics of fullerene $(C_{60})$ particles in liquid crystal (LC) medium under dc electric field have been investigated. This effect was studied for homogeneously aligned nematic LC cells driven by in-plane field. The $C_{60}$ was found to be aggregated in a form of cluster inside the LC medium. Hence polystytene was used to protect the aggregation of $C_{60}$ in LC medium. When the electric field was applied, the fullerenes start to move in direction of applied electric field. The density of $C_{60}$'s particles at the electrodes increase with increase in the value of applied electric field. The dynamical motions of fullerene $(C_{60})$ particles in liquid crystal (LC) suggest that fullerene can be designed for electrophoretic displays (i.e., electronic ink).

  • PDF

높은 위상지연값을 갖는 FFS mode에서 전극 위치에 따른 전기광학적 특성 연구 (Study on electro-optical characteristics of FFS mode with high $d{\Delta}n$ according to the electrode position)

  • 하경수;조은미;박지웅;김성수;정준호;김민수;김미영;이명훈;이승희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.310-311
    • /
    • 2008
  • We have studied electro-optical characteristics of fringe-field switching (FFS) mode with high $d{\Delta}n$ according to the electrode position. In this device, the fringe-electric field drives the LCs to rotate so that the dielectric torque is electrode-positional dependent, which results in electrode-position dependency in the LC's rotating angle. We confirmed polarization microscope image and chromaticity diagram at the different electrode position with LC that have high $d{\Delta}n$. Since the FFS mode is influenced by horizontal and vertical electric field, the FFS mode modulates light using both phase retardation and polarization rotation effect, which had already been verified with previous studies. However, from another point of view, tight modulation of FFS mode has been demonstrated by performing experiment and calculated simulation at the high $d{\Delta}n$ LC cell.

  • PDF

X-선 회절 패턴 측정과 투과 전자 현미경을 이용한 구리 나노분말의 수소 환원 처리 시 발생하는 미세조직 변화 및 치밀화 시편의 물성 분석 (Analysis of the Change in Microstructures of Nano Copper Powders During the Hydrogen Reduction using X-ray Diffraction Patterns and Transmission Electron Microscope, and the Mechanical Property of Compacted Powders)

  • 안동현;이동준;김우열;박이주;김형섭
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.207-214
    • /
    • 2014
  • In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relatively high temperature of $350^{\circ}C$ in order to eliminate surface oxide layers, which are the main obstacles for fabricating a nano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure before and after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patterns using the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD line profile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduction treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as the basis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of the particles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results demonstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders is achieved.

염료감응형 태양전지의 탄소나노튜브 상대전극의 광투과도와 전기화학적 특성이 에너지 변환 효율에 미치는 영향 (Effect of Electrochemical Properties and Optical Transmittance of Carbon Nanotubes Counter Electrodes on the Energy Conversion Efficiency of Dye-sensitized Solar Cells)

  • 한영문;황숙현;강명훈;김영주;김현국;김상효;배효준;최현광;전민현
    • 한국전기전자재료학회논문지
    • /
    • 제24권4호
    • /
    • pp.333-339
    • /
    • 2011
  • In this work, electrochemical characteristics and optical transmittance of carbon nanotubes (CNTs) counter electrodes which had different amount of CNTs in CNTs slurries were analyzed. Two-step heat treatment processes were applied to achieve well-fabricated CNTs electrode. Three sets of CNTs electrodes and dye-sensitized solar cells (DSSCs) with CNTs counter electrodes were prepared. As the amount of CNTs increased, sheet resistance of CNTs electrode decreased. CNTs electrode with low sheet resistance had low electrochemical impedance and fast redox reaction. On the other hand, in case of CNTs counter electrode with low density of CNTs, performance of the dye-sensitized solar cell was improved due to its high optical transmittance. We found that the transmittance of CNTs counter electrode influence the performance of dye-sensitized solar cells.

뇌혈관 중재적 시술에서 차폐체를 이용한 시술자의 피폭선량과 화질에 관한 연구 (Study on Exposure Dose and Image Quality of Operator Using Shielding Material in Neuro Interventional Radiology)

  • 김대호;김상현;이영진;임종천;한동균
    • 한국방사선학회논문지
    • /
    • 제11권7호
    • /
    • pp.579-587
    • /
    • 2017
  • 중재적 시술은 매우 낮은 관전류를 사용함에도 불구하고 장시간 방사선 피폭으로 인해 시술자뿐만 아니라 환자의 방사선 노출에 의한 위험도가 크다. 이에 본 연구의 목적은 뇌혈관 중재적 시술 시 시술자가 받는 선량을 측정하고 의료 방사선으로부터의 노출을 효율적으로 차단할 수 있는 차폐물질과 차폐방식을 찾아 시술자가 받는 피폭선량을 화질에 영향을 미치지 않는 범위 내에서 최소화 할 수 있는 방법을 찾는 것이다. 결과적으로, Nano Tungsten 물질로 새롭게 고안한 차폐방식을 사용하였을 때 시술자 측에서 평균 7.95% 선량이 감소되는 것을 확인할 수 있었다. 또한, 본 연구에서 고안한 차폐체를 사용하였을 때 PSNR의 결과는 38.44 dB로 측정되었으며 이는 Nano Tungsten이 영상의 화질에 큰 영향을 끼치지 않는 것으로 확인할 수 있었다. 결론적으로, Nano Tungsten 차폐물질은 화질에 영향을 미치지 않는 범위 내에서 시술자뿐만 아니라 환자의 선량을 상당히 줄일 수 있음을 알 수 있었다. 위의 물질을 사용할 경우 최근 차폐물질의 이슈로 부각되고 있는 인체 및 환경의 유해성 및 경제성에 관련한 문제점들을 해결할 수 있을 것으로 기대된다.

친환경 GIS Spacer용, 에폭시-나노-마이크로실리카 혼합 콤포지트의 교류 전기적, 기계적 특성 (AC Electrical and Mechanical Properties of Epoxy-Nano-Microsilica Mixed Composites for Eco-Friendly GIS Spacer)

  • 박재준
    • 전기학회논문지
    • /
    • 제67권9호
    • /
    • pp.1181-1188
    • /
    • 2018
  • In order to develop new insulating materials for GIS Spacer using environmentally friendly insulating gas, three kinds of dispersed liquid nano composites of solid epoxy /nano layered silicate filled material were prepared. And the epoxy/nano/micro silica composite was prepared by mixing epoxy/nano 3 phr dispersion/4 kinds of filler contents(40,50,60, 70wt%). The electrical insulation breakdown strengths of the nano and nano/micro mixed composites were evaluated by using 8 kinds of samples including the original epoxy. The mechanical tensile strength of the epoxy / nano / micro silica composite were evaluated, also. The TEM was measured to evaluate the internal structure of nano/micro composites. As a result, it was confirmed that the layered silicate nano particles was exfoliated through the process of inserting epoxy resin between silicate layers and the layers. In addition, dispersion of nano / micro silica resulted in improvement of electrical insulation breakdown strength with increase of filling amount of dense tissue with nanoparticles inserted between microparticles. In addition, the tensile strength showed a similar tendency, and as the content of microsilica filler increased, the mechanical improvement was further increased.

Selective Etching of Magnetic Layer Using CO/$NH_3$ in an ICP Etching System

  • Park, J.Y.;Kang, S.K.;Jeon, M.H.;Yeom, G.Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.448-448
    • /
    • 2010
  • Magnetic random access memory (MRAM) has made a prominent progress in memory performance and has brought a bright prospect for the next generation nonvolatile memory technologies due to its excellent advantages. Dry etching process of magnetic thin films is one of the important issues for the magnetic devices such as magnetic tunneling junctions (MTJs) based MRAM. CoFeB is a well-known soft ferromagnetic material, of particular interest for magnetic tunnel junctions (MTJs) and other devices based on tunneling magneto-resistance (TMR), such as spin-transfer-torque MRAM. One particular example is the CoFeB - MgO - CoFeB system, which has already been integrated in MRAM. In all of these applications, knowledge of control over the etching properties of CoFeB is crucial. Recently, transferring the pattern by using milling is a commonly used, although the redeposition of back-sputtered etch products on the sidewalls and the low etch rate of this method are main disadvantages. So the other method which has reported about much higher etch rates of >$50{\AA}/s$ for magnetic multi-layer structures using $Cl_2$/Ar plasmas is proposed. However, the chlorinated etch residues on the sidewalls of the etched features tend to severely corrode the magnetic material. Besides avoiding corrosion, during etching facets format the sidewalls of the mask due to physical sputtering of the mask material. Therefore, in this work, magnetic material such as CoFeB was etched in an ICP etching system using the gases which can be expected to form volatile metallo-organic compounds. As the gases, carbon monoxide (CO) and ammonia ($NH_3$) were used as etching gases to form carbonyl volatiles, and the etched features of CoFeB thin films under by Ta masking material were observed with electron microscopy to confirm etched resolution. And the etch conditions such as bias power, gas combination flow, process pressure, and source power were varied to find out and control the properties of magnetic layer during the process.

  • PDF

Characterization of InSbTe nanowires grown directly by MOCVD for high density PRAM application

  • Ahn, Jun-Ku;Park, Kyoung-Woo;Jung, Hyun-June;Park, Yeon-Woong;Hur, Sung-Gi;Yoon, Soon-Gil
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.23-23
    • /
    • 2009
  • Recently, the nanowire configuration of GST showed nanosecond-level phase switch at very low power dissipation, suggesting that the nanowires could be ideal for data storage devices. In spite of many advantages of IST materials, their feasibility in both thin films and nanowires for electronic memories has not been extensively investigated. The synthesis of the chalcogenide nanowires was mainly preformed via a vapor transport process such as vapor-liquid-solid (VLS) growth at a high temperature. However, in this study, IST nanowires as well as thin films were prepared at a low temperature (${\sim}250^{\circ}C$) by metal organic chemical vapor deposition(MOCVD) method, which is possible for large area deposition. The IST films and/or nanowires were selectively grown by a control of working pressure at a constant growth temperature by MOCVD. In-Sb-Te NWs will be good candidate materials for high density PRAM applications. And MOCVD system is powerful for applying ultra scale integration cell.

  • PDF

Growth and analysis of Copper oxide nanowire

  • Park, Yeon-Woong;Seong, Nak-Jin;Jung, Hyun-June;Chanda, Anupama;Yoon, Soon-Gil
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.245-245
    • /
    • 2009
  • l-D nanostructured materials have much more attention because of their outstanding properties and wide applicability in device fabrication. Copper oxide(CuO) has been realized as a p-type metal oxide semiconductor with narrow band gap of 1.2 -1.5eV. Copper oxide nanostructures can be synthesized by various growth method such as oxidation reaction, thermal evaporation thermal decomposition, sol-gel. and Mostly CuO nanowire prepared on the Cu substrate such as Copper foil, grid, plate. In this study, CuO NWs were grown by thermal oxidation (at various temperatures in air (1 atm)) of Cu metal deposited on CuO (20nm)/$SiO_2$(250nm)/Si. A 20nm-thick CuO layer was used as an adhesion layer between Cu metal and $SiO_2$

  • PDF