• Title/Summary/Keyword: Nano-material

Search Result 2,414, Processing Time 0.026 seconds

Dielectric Properties of Epoxy/Micro-sized Alumina Composite and of Epoxy/Micro-sized/Nano-sized Alumina Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.338-341
    • /
    • 2015
  • Epoxy/micro-sized alumina composite was prepared, and the effects of alumina content on the dielectric properties were investigated in order to develop an insulation material for gas-insulated switchgears (GIS). Nano-sized alumina (average particle size: 30 nm) was also incorporated into the epoxy/micro-sized alumina composite. Dielectric tests were carried out in ASTM D 150, and capacitance (Cp) and dielectric loss (tanδ) were measured. The dielectric constant increased with increasing alumina content in the epoxy/micro-alumina system and the epoxy/micro-alumina/nano-alumina system. As 1,3-diglycidyl glyceryl ether (DGE) content increased, the dielectric constant decreased and dielectric loss increased. This ocurred as a result of the weak electric field enhancement due to homogeneous dispersion of micro- and nano-sized alumina particles in an epoxy composite.

Fabrication of gelatin-amorphous CaP nano fibrous mat forusing as fast bone healing material

  • Sarkar, Swapan Kumar;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.40.2-40.2
    • /
    • 2009
  • Using the favorable resorption behavior of amorphous Calcium phosphate (CaP) we fabricated a gelatin basednano fibrous mat by electrospinning for using as a fast healing patch for minorbone defects. Bone is predominantly formed by an inorganic phase of nano-crystalline HAp materials and nano fibrous protein material of collagen. The osteoblast cells, which are the bone formation cells and are key to the new bone formation, receive these materials to form new bone. Taking these considerations we make a new nano fibrous mat of amorphous CaP and gelatin, which is derived from collagen itself. A polymer carrier of poly caprolactone(PCL) was used in the system to stabilize the materials in biological condition. The electrospinning conditions were optimized for smooth mat without any droplet formation. The fabricated mat was characterized for its morphologyby SEM. Mechanical properties like tensile strength was evaluated. To investigate the bio-compatibility we performed the MTT assay and investigated its resorption behavior and apatite formation behavior by SBF immersion.

  • PDF

Structural and Optical Properties of AZO/Ag/AZO Films for Dye Sensitized Solar Cell (염료감응 태양전지 응용을 위한 다층박막구조 투명전도막의 특성평가)

  • Cho, Hyun-Jin;Hur, Sung-Gi;Park, Jong-Hyun;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.24-24
    • /
    • 2009
  • 투명전극 (TCO Transparent Conductive Oxide)은 Solar cell, Touch panel, Sensor 등 많은 분야에 이용되어지고 있다. ZnO 그리고 $SnO_2$는 ITO룰 대체하기 위하여 오래전부터 연구가 되어지고 있다. 하지만 ZnO가 가지고 있는 많은 장점에도 불구하고 ITO를 대체하기 위한 전기적 특성이 충분하지 않다. 따라서 ZnO에 Al를 도핑하는 등 다양한 연구가 진행되어왔다. 본 실험은 우수한 광학특성 및 전기적 (10-5) 특성을 확보하기 위하여 AZO/Ag/AZO 다층박막구조 형성하였다. 또한 염료감응 태양전지에 적용하기 위하여 다층박막구조를 이용한 안정성 테스트를 진행하였다.

  • PDF

Development of Nano Stage for Ultra High Vacuum (진공용 나노스테이지 개발)

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.472-477
    • /
    • 2004
  • Miniaturization is the central theme in modern fabrication technology. Many of the components used in modem products are becoming smaller and smaller. The direct write FIB technology has several advantages over contemporary micromachining technology, including better feature resolution with low lateral scattering and capability of mastless fabrication. Therefore, the application of focused ion beam(FIB) technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few ${\mu}{\textrm}{m}$. It is not unsuitable to the sputtering and the deposition to make the high-precision structure in micro or macro scale. Our research is the development of nano stage of 200mm strokes and l0nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about 1$\times$10$^{-5}$ pa. This paper presents the concept of nano stages and the discussion of the material treatment for ultra tush vacuum.

  • PDF

Origin of Optical Bounce during switching in the FFS Mode using a LC with Positive Dielectric Anisotropy (유전율이 양인 액정을 이용한 FFS모드의 스위칭시 Optical Bounce 발생 원인에 관한 연구)

  • Ha, Kyung-Su;Jung, Jun-Ho;Kim, Min-Su;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.63-64
    • /
    • 2009
  • Optical bounce during switching in the fringe field switching (FFS) mode using a liquid crystal (LC) with positive dielectric anisotropy has been observed. According to the analysis, it occurs at two positions which are center and edge of the pixel electrode, which decreases decaying response time. The former is major and mainly associated with increase in twist angle instantaneously during switching off resulted from decrease in tilt angle near by LC molecules at center. This paper discusses the origin of such optical bounces.

  • PDF

Effect of CNT Diameter on Physical Properties of Styrene-Butadiene Rubber Nanocomposites

  • Park, Young-Soo;Huh, Mong-Young;Kang, Sin-Jae;Yun, Seok-Il;Ahn, Kay-Hyeok
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.320-324
    • /
    • 2009
  • We investigated the effect of diameter and content of carbon nanotubes (CNTs) on the physical properties of styrenebutadiene rubber (SBR)/CNTs nanocomposites. CNTs-reinforced SBR nanocomposites were prepared by the melt mixing process. CNTs with different diameters were synthesized by the chemical vapor deposition method (CVD). In this work, the mechanical property and other physical properties of SBR/CNTS nanocomposites were discussed as a function of the content and diameter of CNTs.

Indium tin oxide - Carbon nanotubes nano composite electrodes using by nano cluster deposition for dye sensitized solar cell applications (나노 클러스터 증착법을 이용한 ITO-CNT 복합체의 염료감응형 태양전지의 이용)

  • Park, Jong-Hyun;Pammi, S.V.N.;Jung, Hyun-June;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.69-69
    • /
    • 2010
  • Carbon nano tubes (CNTs) have been attractive candidates for fundamental research studies due to their outstanding physical and chemical properties. High thermal and chemical stability and large surface area make CNTs an ideal platform for many nano materials systems. Several applications such as Several applications were proposed for CNTs many of which are concerned with conductive or high strength composites make them excellent candidates for a variety of energy conversion and storage technologies.

  • PDF

Electrical Properties for Micro-and-Nano- Mixture Composites using Electric Field Dispersion (전기장분산법을 이용한 나노와 마이크로 혼합된 콤포지트의 전기적 특성)

  • Cho, Dae-Lyoung;Kim, Jong-Ho;Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.32-32
    • /
    • 2010
  • A epoxy/multilayered silicate nanocomposite was prepared by a new AC electric application method and micro silica particle was poured into the nanocomposite in order to prepare epoxy/micro-and-nano- mixed composites (EMNC). Electric insulation breakdown strength was measured in a sphere-sphere electrode system designed for the prevention of edge breakdown and the data were estimated by Weibull plot. As the exfoliated silicate nano-plates were homogeniously dispersed in the micro silica particles, the insulation property was higherd.

  • PDF

Estimation of Breakdown Properties in Nano-composites using Weibull Statistics (와이블 통계를 이용한 나노컴퍼지트 파괴강도의 평가)

  • Lee, Kang-Won;Lee, Hyuk-Jin;Park, Hee-Doo;Kim, Jong-Hwan;Shin, Jong-Yeol;Lee, Chung-Ho;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.285-286
    • /
    • 2008
  • Recently, epoxy based nano-composites are being increasingly investigated for their electrical properties, since the introduction of nano fillers demonstrate several advantages in their properties when compared with the similar properties obtained for epoxy systems with micrometer sized fillers. We calculated scale and shape parameter using dielectric strength. In this paper, it is investigated that the allowable' breakdown probability of specimens is stable at some value using Weibull statistics. Therefore we found that breakdown probability of specimens is stable until 20 [%].

  • PDF

Tribological Performance of Laser Textured Translucent Duplex α/β-Sialon Composite Ceramics

  • Joshi, Bhupendra;Tripathi, Khagendra;Gyawali, Gobinda;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.180-181
    • /
    • 2014
  • Optically translucent Sialon ceramics was fabricated by hot pressed sintering method. The Sialon ceramics was laser textured and their tribological performance was observed. Starved lubrication method was applied on Sialon ceramics with different dimple spacing under a load of 10N and at room temperature. The material having high dimple spacing ($200{\mu}m$) shows low coefficient of friction. The material shows mild wear and therefore, wear rate of steel ball (meeting partner) was observed to measure wear rate. Different phases Sialon ceramics were analyzed by XRD patterns. Moreover, the mechanical properties of the Sialon ceramics were observed.

  • PDF