• Title/Summary/Keyword: Nano-gold

Search Result 156, Processing Time 0.034 seconds

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs (QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조)

  • Lee, Yong-Choon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.

Fabrication of Mo Nano Patterns Using Nano Transfer Printing with Poly Vinyl Alcohol Mold (Poly Vinyl Alcohol 몰드를 이용한 Nano Transfer Printing 기술 및 이를 이용한 Mo 나노 패턴 제작 기술)

  • Yang, Ki-Yeon;Yoon, Kyung-Min;Han, Kang-Soo;Byun, Kyung-Jae;Lee, Heon
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.224-227
    • /
    • 2009
  • Nanofabrication is an essential process throughout industry. Technologies that produce general nanofabrication, such as e-beam lithography, dip-pen lithography, DUV lithography, immersion lithography, and laser interference lithography, have drawbacks including complicated processes, low throughput, and high costs, whereas nano-transfer printing (nTP) is inexpensive, simple, and can produce patterns on non-plane substrates and multilayer structures. In general nTP, the coherency of gold-deposited stamps is strengthened by using SAM treatment on substrates, so the gold patterns are transferred from stamps to substrates. However, it is hard to apply to transfer other metallic materials, and the existing nTP process requires a complicated surface treatment. Therefore, it is necessary to simplify the nTP technology to obtain an easy and simple method for fabricating metal patterns. In this paper, asnTP process with poly vinyl alcohol (PVA) mold was proposed without any chemical treatment. At first, a PVA mold was duplicated from the master mold. Then, a Mo layer, with a thickness of 20 nm, was deposited on the PVA mold. The Mo deposited PVA mold was put on the Si wafer substrate, and nTP process progressed. After the nTP process, the PVA mold was removed using DI water, and transferred Mo nano patterns were characterized by a Scanning electron micrograph (SEM) and Energy Dispersive spectroscopy (EDS).

Sintering Characteristics of Au and Ag Nanoparticles Prepared by Inert Gas Condensation (불활성 증발 응축방법으로 제조된 금과 은 나노입자의 소결특성)

  • Lee, Seung-Hyun;Min, Dong-Ryoul;Lee, Kwang-Min
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.165-172
    • /
    • 2007
  • The purpose of this study was to analyze the sintering characteristics of gold and silver nanoparticles. In this study, gold and silver nanoparticles were prepared by using Inert Gas Cndensation (IGC). The sintering temperatures for gold and silver nanoparticles were $100{\sim}1000^{\circ}C\;and\'100{\sim}500^{\circ}C$, respectively. The sintering characteristics of gold and silver nanoparticles prepared by IGC were evaluated by X-ray diffraction(XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Gold and silver nanoparticles with the size of $1{\sim}100\;nm\;and\;10{\sim}100\;nm$, respectively, were obtained. The size of sintered gold and silver nanoparticles increased with an increase in the sintering temperature. XRD data showed that silver nanoparticles were similar with polycrystal single-phase.

Plasmonic effects and size relation of gold-platinum alloy nanoparticles

  • Jawad, Muhammad;Ali, Shazia;Waseem, Amir;Rabbani, Faiz;Amin, Bilal Ahmad Zafar;Bilal, Muhammad;Shaikh, Ahson J.
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.169-180
    • /
    • 2019
  • Plasmonic effects of gold and platinum alloy nanoparticles (Au-Pt NPs) and their comparison to size was studied. Various factors including ratios of gold and platinum salt, temperature, pH and time of addition of reducing agent were studied for their effect on particle size. The size of gold and platinum alloy nanoparticles increases with increasing concentration of Pt NPs. Temperature dependent synthesis of gold and platinum alloy nanoparticles shows decrease in size at higher temperature while at lower temperature agglomeration occurs. For pH dependent synthesis of Au-Pt nanoparticles, size was found to be increased by increase in pH from 4 to 10. Increasing the time of addition of reducing agent for synthesis of pure and gold-platinum alloy nanoparticles shows gradual increase in size as well as increase in heterogeneity of nanoparticles. The size and elemental analysis of Au-Pt nanoparticles were characterized by UV-Vis spectroscopy, XRD, SEM and EDX techniques.

Enhanced Electrical Conductivity of Gold Doped Graphene Films by Microwave Treatment

  • Kim, Yoo-Seok;Song, Woo-Seok;Cha, Myoung-Jun;Lee, Su-Il;Cho, Ju-Mi;Kim, Sung-Hwan;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.188-188
    • /
    • 2012
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ${\sim}60{\Omega}$/sq and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. In this study, we report a creative strategy, irradiation of microwave at room temperature under vacuum, for obtaining size-homogeneous gold nano-particle doping on graphene. The gold nano-particlization promoted by microwave irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping. These results clearly revealed that gold nanoparticle with ${\geq}30$ nm in mean size were decorated along the surface of the graphene after microwave irradiation. The fabrication high-performance transparent conducting film with optimized doping condition showed a sheet resistance of ${\geq}100{\Omega}$/sq. at ~90% transmittance. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

Fiber-Optic Sensor Simultaneously Detecting Localized Surface Plasmon Resonance and Surface-Enhanced Raman Scattering

  • Norov, Erdene;Jeong, Hyeon-Ho;Park, Jae-Hyoung;Lee, Seung-Ki;Jeong, Dae Hong
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.46-51
    • /
    • 2013
  • This study reports a fiber-optic sensor detecting biomolecule by simultaneously monitoring localized surface plasmon resonance (LSPR) from gold nanoparticles (Au NPs) of ca. $50{\pm}5$ nm attached on one end of optical fiber and surface enhanced Raman scattering (SERS) of the reporter molecules adsorbed on the gold surfaces as an additional sensing tool. The sensor was fabricated by immobilizing Au NPs on one end of an optical fiber by chemical reaction. LSPR and SERS signals of the sensor were measured using various refractive indices solutions. Finally, the sensor was applied to observe real-time LSPR sensor-gram and SERS spectra of the reporter molecule of 4-aminothiphenol during the antibody-antigen reaction of interferon-gamma (IFN-${\gamma}$) as a proof-concept experiment of biological applications.

Nano-Optical Investigation of Enhanced Field at Gold Nanosphere-Gold Plane Junctions

  • Ahn, Sung-Hyun;Park, Won-Hwa;Kim, Zee-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2200-2202
    • /
    • 2007
  • The local field distribution around gold nanosphere-gold plane junction has been studied using the finitedifference time-domain (FDTD) electrodynamics calculation procedure. We find that both the in-plane and out-of-plane polarized excitation produce enhanced field strong enough to explain the observed SERS activities of the junctions. Comparison with a simple dipole-image dipole model shows that the enhanced field primarily originates from the multipole-image multipole interaction, which indicates that the detailed fine-structures of the nanoparticles also play a significant role in the SERS activities as well.

Nano-identification for the Cleavage of Disulfide Bond during the Self-Assembly Processes of Unsymmetric Dialkyl Disulfides on Au(111)

  • Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.553-557
    • /
    • 2005
  • The formation of striped phases of unsymmetric hexyl octadecyl disulfide ($CH_3(CH_2)_5SS(CH_2)_{17}CH_3$, HOD) and 1-hydroxyundecyl octadecyl disulfide ($CH_3(CH_2)_{17}SS(CH_2)_{11}$OH, HUOD) on Au(111) and graphite has been investigated by scanning tunneling microscopy (STM) to understand the self-assembly processes of dialkyl disulfides. STM imaging clearly shows the formation of striped phases having corrugation periodicities that are nearly consistent with the molecular length of alkanethiolate moieties formed after the S-S bond cleavage of dialkyl disulfide on a gold surface. On the other hand, self-assembled monolayers (SAMs) of dialkyl disulfides on a graphite surface displayed long-range, well-ordered monolayers with one striped pattern that shows periodicity as a function of molecular length via nondissociative adsorption. From a nonoscopic viewpoint, we have clearly demonstrated that dialkyl disulfide SAMs on gold form via S-S bond cleavage of disulfide.

Enhancement of Hardness and Moderation of Surface Defects of 14K, 18K Yellow Gold Alloy by Heat Treatment (열처리에 의한 14K, 18K yellow gold alloy의 경도 향상 및 표면 결함 완화)

  • Ahn, Ji-Hyun;Seo, Jin-Kyo;Ahn, Yoeng-Gil;Park, Jong-Wang
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.2
    • /
    • pp.86-90
    • /
    • 2010
  • In this study, we conducted heat treatment on 14K, 18K yellow gold alloy at various temperature conditions for improving their hardness and moderating their surface defects. Also after the heat treatment we used EPMA (Electron Probe Micro Analyzer), XRF (x-ray Fluorescence spectroscopy) for qualitative analysis and OM (optical microscope), SEM (scanning electron microscope) to investigate the changes of surface grain boundary. We used Vickers hardness tester to verify the changes of hardness. After the heat treatment, 14K, 18K gold alloys showed improved hardness and moderated surface defects at specific temperatures and duration.