DOI QR코드

DOI QR Code

Nano-identification for the Cleavage of Disulfide Bond during the Self-Assembly Processes of Unsymmetric Dialkyl Disulfides on Au(111)

  • Published : 2005.04.20

Abstract

The formation of striped phases of unsymmetric hexyl octadecyl disulfide ($CH_3(CH_2)_5SS(CH_2)_{17}CH_3$, HOD) and 1-hydroxyundecyl octadecyl disulfide ($CH_3(CH_2)_{17}SS(CH_2)_{11}$OH, HUOD) on Au(111) and graphite has been investigated by scanning tunneling microscopy (STM) to understand the self-assembly processes of dialkyl disulfides. STM imaging clearly shows the formation of striped phases having corrugation periodicities that are nearly consistent with the molecular length of alkanethiolate moieties formed after the S-S bond cleavage of dialkyl disulfide on a gold surface. On the other hand, self-assembled monolayers (SAMs) of dialkyl disulfides on a graphite surface displayed long-range, well-ordered monolayers with one striped pattern that shows periodicity as a function of molecular length via nondissociative adsorption. From a nonoscopic viewpoint, we have clearly demonstrated that dialkyl disulfide SAMs on gold form via S-S bond cleavage of disulfide.

Keywords

References

  1. He, H. X.; Zhang, H.; Li, Q. G.; Zhu, T.; Li, S. F. I.; Liu, J. F. Langmuir 2000, 16, 3846 https://doi.org/10.1021/la991356v
  2. Nuzzo, R. G.; Zegarski, B. R.; Dubois, L. H. J. Am. Chem. Soc. 1987, 109, 733 https://doi.org/10.1021/ja00237a017
  3. Kim, D. H.; Noh, J.; Hara, M.; Lee, H. Bull. Korean Chem. Soc. 2001, 22, 276 https://doi.org/10.1007/BF02701497
  4. Hyun, M.; Rhee, C. K. Bull. Korean Chem. Soc. 2001, 22, 213
  5. Sung, M.-M.; Kim, Y. Bull. Korean Chem. Soc. 2001, 22, 748
  6. Char, S.-K. Bull. Korean Chem. Soc. 2004, 25, 786 https://doi.org/10.5012/bkcs.2004.25.6.786
  7. Tamada, K.; Akiyama, H.; Wei, T. X.; Kim, S. A. Langmuir 2003, 19, 2306 https://doi.org/10.1021/la0258493
  8. Noh, J.; Hara, M. Langmuir 2001, 17, 7280 https://doi.org/10.1021/la0100441
  9. Noh, J.; Hara, M. Langmuir 2002, 18, 1953 https://doi.org/10.1021/la010803f
  10. Noh, J.; Kato, H. S.; Kawai, M.; Hara, M. J. Phys. Chem. B 2002, 106, 13268 https://doi.org/10.1021/jp021742c
  11. Noh, J.; Ito, E.; Nakajima, K.; Kim, J.; Lee, H.; Hara, M. J. Phys. Chem. B 2002, 106, 7139 https://doi.org/10.1021/jp020482w
  12. Noh, J.; Ito, E.; Araki, T.; Hara, M. Surf. Sci. 2003, 532/535, 1116 https://doi.org/10.1016/S0039-6028(03)00164-X
  13. Noh, J.; Hara, M. Langmuir 2002, 18, 9111 https://doi.org/10.1021/la020342d
  14. Ishida, T.; Yamamoto, Y.; Mizutani, W.; Motomatsu, M.; Tokumoto, H.; Hokari, H.; Azehara, H.; Fujihira, M. Langmuir 1997, 13, 3261 https://doi.org/10.1021/la962022y
  15. Camillone III, N.; Leung, T. Y. B.; Schwartz, P.; Eisenberger, P.; Scoles, G. Langmuir 1996, 12, 2737 https://doi.org/10.1021/la951097j
  16. Poirier, G. E.; Pylant, E. D. Science 1996, 272, 1145 https://doi.org/10.1126/science.272.5265.1145
  17. Poirier, G. E. Langmuir 1999, 15, 1167 https://doi.org/10.1021/la981374x
  18. Noh, J.; Hara, M. Langmuir 2000, 16, 2045 https://doi.org/10.1021/la991423l
  19. Noh, J.; Murase, T.; Nakajima, K.; Lee, H.; Hara, M. J. Phys. Chem. B 2000, 104, 7411 https://doi.org/10.1021/jp000902m
  20. Takami, T.; Delamarche, E.; Michel, B.; Gerber, Ch. Langmuir 1995, 11, 3876 https://doi.org/10.1021/la00010a044
  21. Venkataraman, B.; Breen, J. J.; Flynm, G. W. J. Phys. Chem. 1995, 99, 6608 https://doi.org/10.1021/j100017a050
  22. Noh, J.; Lee, D.; Hara, M.; Lee, H.; Sasabe, H.; Knoll, W. Jpn. J. Appl. Phys., Part I 1999, 38, 3897 https://doi.org/10.1143/JJAP.38.3897
  23. Claypool, C. L.; Faglioni, F.; Gorddard III, W. A.; Gray, H. B.; Lewis, N, S.; Marcus, R. A. J. Phys. Chem. B 1997, 101, 5978 https://doi.org/10.1021/jp9701799
  24. Cyr, D. M.; Venkataraman, B.; Flynm, G. W.; Black, A.; Whitesides, G. M. J. Phys. Chem. 1996, 100, 13747 https://doi.org/10.1021/jp9606467
  25. Poirier, G. Langmuir 1999, 15, 1167 https://doi.org/10.1021/la981374x
  26. Gunning, A. P.; Kirby, A. R.; Mallard, X.; Morris, V. J. J. Chem. Soc., Faraday Trans. 1994, 90, 2551 https://doi.org/10.1039/ft9949002551
  27. Nishida, N.; Hara, M.; Sasabe, H.; Knoll, W. Jpn. J. Appl. Phys., Part I 1997, 36, 2370
  28. Biebuyck, H. A.; Whitesides, G. M. Langmuir 1993, 9, 1766 https://doi.org/10.1021/la00031a025
  29. Heister, K.; Allara, D. L.; Bahnck, K.; Frey, S.; Zharnikov, S. M.; Grunze, M. Langmuir 1999, 15, 5440 https://doi.org/10.1021/la9902385

Cited by

  1. Synthesis of Conducting Polymer–Metal Nanoparticle Hybrids Exploiting RAFT Polymerization vol.4, pp.2, 2015, https://doi.org/10.1021/mz500645c
  2. Structure and Electrochemical Behavior of Aromatic Thiol Self-Assembled Monolayers on Au(111) vol.27, pp.3, 2006, https://doi.org/10.5012/bkcs.2006.27.3.403
  3. Formation and Structure of Cyclopentanethiol Self-Assembled Monolayers on Au(111) vol.27, pp.6, 2005, https://doi.org/10.5012/bkcs.2006.27.6.944
  4. Temporal Stability of Thiophene Self-Assembled Monolayers on Au(111) vol.464, pp.1, 2005, https://doi.org/10.1080/15421400601031009
  5. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450