• Title/Summary/Keyword: Nano-coating

Search Result 770, Processing Time 0.025 seconds

Technological Trends in a local anodization (국부적 양극산화 기술 동향)

  • Kwang-Mo Kang;Sumin Choi;Yoon-Chae Nah
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • Anodization is an electrochemical process that electrochemically converts a metal surface into an oxide layer, resulting in enhanced corrosion resistance, wear resistance, and improved aesthetic appearance. Local anodization, also known as selective anodization, is a modified process that enables specific regions or patterns on the metal surface to undergo anodization instead of the entire surface. Several methods have been attempted to produce oxide layers via localized anodic oxidation, such as using a mask or pre-patterned substrate. However, these methods are often intricate, time-consuming, and costly. Conversely, the direct writing or patterning approach is a more straightforward and efficient way to fabricate the oxide layers. This review paper intends to enhance our comprehension of local anodization and its potential applications in various fields, including the development of nanotechnologies. The application of anodization is promising in surface engineering, where the anodic oxide layer serves as a protective coating for metals or modifies the surface properties of materials. Furthermore, anodic oxidation can create micro- and nano-scale patterns on metal surfaces. Overall, the development of efficient and cost-effective anodic oxidation methods is essential for the advancement of various industries and technologies.

A Study on the Tribological Characteristics of AL7075-T7351 Aluminum Alloy Coated with TiN Nano Thin Film (TiN 나노 박막을 코팅한 AL7075-T7351 알루미늄 합금의 트라이볼로지 특성에 관한 연구)

  • Kwang-Su Kim;Sung-Hoon Im;Do-Hyeon Kim;Hyeong-Jun Park;Sun-Cheol Huh
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.743-750
    • /
    • 2023
  • Aluminum alloy is a material widely used in the aircraft industry. However, since it has relatively low hardness, strength and tribological properties, it is necessary to improve these properties. In this paper, a TiN thin film was coated on the surface of AL7075-T7351 using DC magnetron sputtering. The coating was performed by setting different deposition pressure, deposition time, and applied power. Then, the tribological properties of the thin film were investigated. As a result of the experiment, the hardness of the thin film was higher than that of the base material, and the specimen with the highest hardness had excellent friction coefficient, wear amount, and adhesive strength characteristics. Through this study, it was confirmed that the tribological characteristics of aluminum alloy can be improved by depositing thin films using DC magnetron sputtering.

TiO2 Thin Film Coating on an Nb-Si-Based Superalloy via Atomic Layer Deposition (원자층 증착법을 통한 Nb-Si계 초내열합금 분말 상의 TiO2 박막 증착 연구)

  • Ji Young Park;Su Min Eun;Jongmin Byun;Byung Joon Choi
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.255-262
    • /
    • 2024
  • Nano-oxide dispersion-strengthened (ODS) superalloys have attracted attention because of their outstanding mechanical reinforcement mechanism. Dispersed oxides increase the material's strength by preventing grain growth and recrystallization, as well as increasing creep resistance. In this research, atomic layer deposition (ALD) was applied to synthesize an ODS alloy. It is useful to coat conformal thin films even on complex matrix shapes, such as nanorods or powders. We coated an Nb-Si-based superalloy with TiO2 thin film by using rotary-reactor type thermal ALD. TiO2 was grown by controlling the deposition recipe, reactor temperature, N2 flow rate, and rotor speed. We could confirm the formation of uniform TiO2 film on the surface of the superalloy. This process was successfully applied to the synthesis of an ODS alloy, which could be a new field of ALD applications.

Fabrication and properties of superhydrophobic $SiO_2$ thin film by sol-gel method (Sol-gel 법에 의한 초발수 $SiO_2$ 박막의 제조 및 특성)

  • Kim, Jin-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Sae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.277-281
    • /
    • 2009
  • Superhydrophobic $SiO_2$ thin films were successfully fabricated on a glass substrate by sol-gel method. To fabricate $SiO_2$ thin film with a high roughness, $SiO_2$ nano particles were added into tetraethoxysilane (TEOS) solution. The prepared $SiO_2$ thin film without an addition of $SiO_2$ nano particles showed a very flat surface with ca. 1.27 nm of root mean square (RMS) roughness. Otherwise, the $SiO_2$ thin films fabricated by using coating solutions added $SiO_2$ nano particles of 1.0, 2.0 and 3.0 wt% showed a RMS roughness of ca. 44.10 nm, ca. 69.58 nm, ca. 80.66 nm, respectively. To modify the surfaces of $SiO_2$ thin films to hydrophobic surface, a hydrophobic treatment was carried out using a fluoroalkyltrimethoxysilane (FAS). The $SiO_2$ thin films with a high rough surface were changed from hydrophilic to hydrophobic surface after the FAS treatment. Especially, the prepared $SiO_2$ thin film with a RMS roughness of 80.66 nm showed a water contact angle of $163^{\circ}$.

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

The Study of Plate Powder Coated Nano Sized ZnO Synthesis and Effect of Sensory Texture Improvement (나노 ZnO 입자가 코팅된 판상 분체의 합성과 사용감 증진 효과에 대한 연구)

  • Jin-Hwa , Lee;Ju-Yeol, Han;Sang-Gil, Lee;Hyeong-Bae, Pyo;Dong-Kyu, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.173-180
    • /
    • 2004
  • Nano sized ZnO particle as 20-30nm applies for material, pigments, rubber additives, gas sensors, varistors, fluorescent substance as well as new material such as photo-catalyst, sensitizer, fluorescent material. ZnO with a particle size in the range 20-30nm has provided to be an excellent UV blocking material in the cosmetics industry, which can be used in sunscreen product to enhance the sun protection factor and natural makeup effect. But pure ZnO particles application limits for getting worse wearing feeling. We make high-functional inorganic-composite that coated with nano-ZnO on the plate-type particle such as sericite, boron nitride and bismuthoxychloride. In this experiment, we synthesized composite powder using hydrothermal precipitation method. The starting material was ZnCl$_2$ Precipitation materials were used hexamethylenetetramine(HMT) and urea. We make an experiment with changing as synthesis factors that are concentrations of starting material, precipitation materials, nuclear formation material, reaction time, and reaction temperature. We analyzed composite powder's shape, crystallization and UV-blocking ability with FE-SEM, XRD, FT-IR, TGA-DTA, In vitro SPF test. The user test was conducted by product's formulator. In the results of this study, nanometer sized ZnD was coated regardless of the type of plate-powder at fixed condition range. When the coated plate-powders were applied in pressed powder product, the glaze of powder itself decreased, but natural make-up effect, spreadability, and adhesionability were increased.

Particle Size Analysis of Nano-sized Talc Prepared by Mechanical Milling Using High-energy Ball Mill (고에너지 볼 밀을 이용한 나노 활석의 형성 및 입도 분석)

  • Kim, Jin Woo;Lee, Bum Han;Kim, Jin Cheul;Kim, Hyun Na
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.47-55
    • /
    • 2018
  • Talc, hydrous magnesium phyllosilicate, is one of the most popular industrial minerals due to their chemical stability and adsorptivity. While micro-sized talc has long been used as a filler and coating, nano-sized talc recently is attracting attention as additives for improving the stability of nanocomposites. In this study, we produced the nano-sized talc powder by mechanical method using high energy ball mill and investigated the changes in particle size and crystallinity with increasing milling time up to 720 minutes. X-ray diffraction results show that the peak width of talc gradually as the milling proceeded, and after 720 minutes of pulverization, the talc showed an amorphous-like X-ray diffraction pattern. Lase diffraction particle size analysis presents that particle size of talc which was ${\sim}12{\mu}m$ decreased to ${\sim}0.45{\mu}m$ as the milling progressed, but no significant reduction of particle size was observed even after grinding for 120 minutes or more. BET specific surface area, however, steadily increases up to the milling time of 720 minutes, indicating that the particle size and morphology change steadily as the milling progressed. Scanning electron microscope and transmission electron microscope images shows that layered particles of about 100 to 300 nm was aggregated as micro-sized particles after pulverization for 720 minutes. As the grinding time increases, the particle size and morphology of talc continuously change, but the nano-sized talc particles form micro sized agglomerates. These results suggest that there is a critical size along the a, b axes in which the size of plates is reduced even though the grinding proceeds, and the reduction of plate thickness along the c axis leads the increase in specific surface area with further grinding. This study could enhance the understanding of the mechanism of the formation of nano-sized talc by mechanical grinding.

Silicon Fabry-Perot Tunable Thermo-Optic Filter (실리콘 파브리-페로 파장가변 열광학 필터)

  • Park, Su-Yeon;Kang, Dong-Heon;Kim, Young-Ho;Gil, Sang-Keun
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.131-137
    • /
    • 2008
  • A silicon Fabry-Perot tunable thermo-optic filter for WDM using the thin film silicon coating is proposed and experimented. The filter is implemented by using the CMP process and polishing both sides of the commercial silicon wafer with normal thickness of 100${\mu}m{\pm}$1%. The filter also has 2-layer or 3-layer dielectrics thin film coating mirror which are alternated ${\lambda}$/4 layers of $SiO_2$($n_{low}$=1.44) and a-Si($n_{high}$=3.48) for the central wavelength of 1550nm by RF sputtering. The experiment shows that FSR is 3.61nm and FWHM is 0.56nm and the finesse is 6.4 for 2-layer mirror with the reflection of 61%, and that FSR is 3.36nm and FWHM is 0.13nm and the finesse is 25.5 for 3-layer mirror with the reflection of 89%. According to thermo-optic effect, the transmitted central wavelength of 1549.73nm at $23^{\circ}C$ is shifted to 1550.91nm at $30^{\circ}C$ and 1553.46nm at $60^{\circ}C$ for 2-layer mirror, and the transmitted central wavelength of 1549.83nm at $23^{\circ}C$ is shifted to 1550.92nm at $30^{\circ}C$ and 1553.07nm at $60^{\circ}C$ for 3-layer mirror.

  • PDF

Effect of Coating with the Mixture of PEDOT:PEG and Sulfuric Acid to Enhance Conductivity of Bacterial Cellulose Platform Film (박테리아 셀룰로오스 기반 전도성 막의 전도도 향상을 위한 PEDOT:PEG와 황산혼합액 코팅의 영향)

  • Yim, Eun-Chae;Kim, Seong-Jun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.114-119
    • /
    • 2016
  • In this study, we tried to add the conductivity to natural polymer like bacterial cellulose (BC) coated with the conductive polymer PEDOT:PEG, graphene and silver nano-wire (AgNW). Sulfuric acid of 10 to 20% was previously mixed with PEDOT:PEG and then the solution was electron spin-coated on the BC membrane. And then, additive coating with graphene and AgNW were done to improve conductivity, which was examined by hall effect. As the result, we confirmed a considerable improvement of conductivity compared to BC-coated film without sulfuric acid treatment as $2.487{\times}10^{10}$ vs $8.093{\times}10^{15}$ ($1/cm^3$), showing higher electron density with $3.25{\times}10^5$ times. Also, we identified that changed particle type to the polymer type by sulfuric acid using SEM analysis. For FT-IR analysis, it was confirmed that S-O radical ($1200cm^{-1}$) increased in the sulfuric acid treatment than non-treated sulfuric acid. As the method used very small amount of PEDOT:PEG, its transparency could be kept, and pre-treatment process of sulfuric acid will be able to simplify the production process.

Graphene Oxide (GO) Layered Structure Ion Exchange Membrane Application for Vanadium Redox Flow Battery (VRB) System Study (산화그라핀 (Graphene Oxide, GO)이 코팅된 양이온 교환막을 용한 바나듐 레독스 흐름 전지 (Vanadium Redox Flow attery, VRB) 시스템에 관한 연구)

  • Lee, Kwan Ju;Chu, Young Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.94-102
    • /
    • 2014
  • Cation exchange membrane (Nafion) was modified to reduce the vanadium ion permeation through the membrane and to increase the vanadium redox flow battery (VRB) system performance by coating the graphene oxide (GO) which has nano-plate like morphology. Modified membrane properties were studied by measuring the ion exchange capacity (I.E.C), water uptake and proton conductivity. The thickness of the coated layer on the surface of the Nafion membrane was observed as $0.93{\mu}m$ by SEM. Proton conductivity and vanadium ion permeability of the modified membrane were decreased to 27% and 25% compared to that of the commercial Nafion membrane respectively. VRB single cell performance test was performed to compare the system performance of the VRB applied with commercial Nafion membrane and modified membrane. VRB system applied with modified membrane showed higher coulombic efficiency and energy efficiency than the VRB system applied with the commercial Nafion membrane due to the reduction of the vanadium ion permeation. From these result, we could suggest that the membrane modification by coating the GO on the surface of the Nafion membrane could be one of the promising strategies to reduce the vanadium ion permeation and to increase the VRB system performance effectively.