References
- Akcay, K., Sirkecioglu, A., Tatlier, M., Savasci, O.T., and Erdem-Senatalar, A. (2004) Wet ball milling of zeolite HY. Powder Technology, 142, 121-128. https://doi.org/10.1016/j.powtec.2004.03.012
- Borges, R., Macedo Dutra, L., Barison, A., and Wypych, F. (2016) MAS NMR and EPR study of structural changes in talc and montmorillonite induced by grinding. Clay Minerals, 51, 69. https://doi.org/10.1180/claymin.2016.051.1.06
- Castillo, L., Lopez, O., Lopez, C., Zaritzky, N., Garcia, M.A., Barbosa, S., and Villar, M. (2013) Thermoplastic starch films reinforced with talc nanoparticles. Carbohydrate Polymers, 95, 664-674. https://doi.org/10.1016/j.carbpol.2013.03.026
- Choi, W.S., Chung, H.Y., Yoon, B.R., and Kim, S.S. (2001) Applications of grinding kinetics analysis to fine grinding characteristics of some inorganic materials using a composite grinding media by planetary ball mill. Powder Technology, 115, 209-214. https://doi.org/10.1016/S0032-5910(00)00341-7
- Christidis, G., Makri, P., and Perdikatsis, V. (2004) Influence of grinding on the structure and colour properties of talc, bentonite and calcite white fillers. Clay Minerals, 39, 163-175. https://doi.org/10.1180/0009855043920128
- Dellisanti, F., Minguzzi, V., and Valdre, G. (2011) Mechanical and thermal properties of a nanopowder talc compound produced by controlled ball milling. Journal of Nanoparticle Research, 13, 5919-5926. https://doi.org/10.1007/s11051-011-0541-6
- Dellisanti, F., Valdre, G., and Mondonico, M. (2009) Changes of the main physical and technological properties of talc due to mechanical strain. Applied Clay Science, 42, 398-404. https://doi.org/10.1016/j.clay.2008.04.002
- Dumas, A., Claverie, M., Slostowski, C., Aubert, G., Careme, C., Le Roux, C., Micoud, P., Martin, F., and Aymonier, C. (2016) Fast-Geomimicking using Chemistry in Supercritical Water. Angewandte Chemie International Edition, 55, 9868-9871. https://doi.org/10.1002/anie.201604096
- Ferrage, E., Seine, G., Gaillot, A.-C., Petit, S., De Parseval, P., Boudet, A., Lanson, B., Ferret, J., and Martin, F. (2006) Structure of the {001} talc surface as seen by atomic force microscopy: comparison with X-ray and electron diffraction results. European Journal of Mineralogy, 18, 483-491. https://doi.org/10.1127/0935-1221/2006/0018-0483
- Filio, J.M., Sugiyama, K., Saito, F., and Waseda, Y. (1994) A study on talc ground by tumbling and planetary ball mills. Powder Technology, 78, 121-127. https://doi.org/10.1016/0032-5910(93)02775-6
- Filippov, L.O., Joussemet, R., Irannajad, M., Houot, R., and Thomas, A. (1999) An approach of the whiteness quantification of crushed and floated talc concentrate. Powder Technology, 105, 106-112. https://doi.org/10.1016/S0032-5910(99)00124-2
- Hemlata and Maiti, S.N. (2015) Mechanical, morphological, and thermal properties of nanotalc reinforced PA6/SEBS-g-MA composites. Journal of Applied Polymer Science, 132, 41381.
- Johnson, R. (1997) Talc. American Ceramic Society Bulletin, 76, 136-137.
- Johnson, R. and Virta, R. (2000) Talc. American Ceramic Society Bulletin, 79, 79-81.
- Kano, J. and Saito, F. (1998) Correlation of powder characteristics of talc during Planetary Ball Milling with the impact energy of the balls simulated by the Particle Element Method. Powder Technology, 98, 166-170. https://doi.org/10.1016/S0032-5910(98)00039-4
- Knieke, C., Sommer, M., and Peukert, W. (2009) Identifying the apparent and true grinding limit. Powder Technology, 195, 25-30. https://doi.org/10.1016/j.powtec.2009.05.007
- Mio, H., Kano, J., Saito, F., and Kaneko, K. (2002) Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball milling. Materials Science and Engineering: A, 332, 75-80. https://doi.org/10.1016/S0921-5093(01)01718-X
- Ober, J.A. (2018) Mineral commodity summaries 2018. US Geological Survey.
- Rayner, J. and Brown, G. (1973) The crystal structure of talc. Clays and Clay Minerals, 21, 103-114. https://doi.org/10.1346/CCMN.1973.0210206
- Sanchez-Soto, P.J., Wiewiora, A., Aviles, M.A., Justo, A., Perez-Maqueda, L.A., Perez-Rodriguez, J.L., and Bylina, P. (1997) Talc from Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape. Applied Clay Science, 12, 297-312. https://doi.org/10.1016/S0169-1317(97)00013-6
- Shin, H., Lee, S., Suk Jung, H., and Kim, J.-B. (2013) Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill. Ceramics International, 39, 8963-8968. https://doi.org/10.1016/j.ceramint.2013.04.093
- Viti, C. (2011) Exploring fault rocks at the nanoscale. Journal of Structural Geology, 33, 1715-1727. https://doi.org/10.1016/j.jsg.2011.10.005
- Yousfi, M., Livi, S., Dumas, A., Le Roux, C., Crepin-Leblond, J., Greenhill-Hooper, M., and Duchet- Rumeau, J. (2013) Use of new synthetic talc as reinforcing nanofillers for polypropylene and polyamide 6 systems: thermal and mechanical properties. Journal of Colloid and Interface Science, 403, 29-42. https://doi.org/10.1016/j.jcis.2013.04.019
- Zazenski, R., Ashton, W.H., Briggs, D., Chudkowski, M., Kelse, J.W., Maceachern, L., McCarthy, E.F., Nordhauser, M.A., Roddy, M.T., Teetsel, N.M., Wells, A.B., and Gettings, S.D. (1995) Talc: Occurrence, Characterization, and Consumer Applications. Regulatory Toxicology and Pharmacology, 21, 218-229. https://doi.org/10.1006/rtph.1995.1032
- 김건영(2000) 산업광물로서의 활석. 광물과 산업, 13, 51-63 (in Korean without English abstract).
Cited by
- 활석 분쇄에 따른 함수율 및 열적거동 변화: 단층의 반복되는 미끌림이 단층 약화에 미치는 영향 vol.32, pp.3, 2018, https://doi.org/10.9727/jmsk.2019.32.3.201
- Effects of Ball Size on the Grinding Behavior of Talc Using a High-Energy Ball Mill vol.9, pp.11, 2018, https://doi.org/10.3390/min9110668