DOI QR코드

DOI QR Code

Particle Size Analysis of Nano-sized Talc Prepared by Mechanical Milling Using High-energy Ball Mill

고에너지 볼 밀을 이용한 나노 활석의 형성 및 입도 분석

  • Kim, Jin Woo (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Lee, Bum Han (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Jin Cheul (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Hyun Na (Department of Geoenvironmental Sciences, Kongju National University)
  • 김진우 (공주대학교 지질환경과학과) ;
  • 이범한 (한국지질자원연구원) ;
  • 김진철 (한국지질자원연구원) ;
  • 김현나 (공주대학교 지질환경과학과)
  • Received : 2018.03.06
  • Accepted : 2018.03.30
  • Published : 2018.03.31

Abstract

Talc, hydrous magnesium phyllosilicate, is one of the most popular industrial minerals due to their chemical stability and adsorptivity. While micro-sized talc has long been used as a filler and coating, nano-sized talc recently is attracting attention as additives for improving the stability of nanocomposites. In this study, we produced the nano-sized talc powder by mechanical method using high energy ball mill and investigated the changes in particle size and crystallinity with increasing milling time up to 720 minutes. X-ray diffraction results show that the peak width of talc gradually as the milling proceeded, and after 720 minutes of pulverization, the talc showed an amorphous-like X-ray diffraction pattern. Lase diffraction particle size analysis presents that particle size of talc which was ${\sim}12{\mu}m$ decreased to ${\sim}0.45{\mu}m$ as the milling progressed, but no significant reduction of particle size was observed even after grinding for 120 minutes or more. BET specific surface area, however, steadily increases up to the milling time of 720 minutes, indicating that the particle size and morphology change steadily as the milling progressed. Scanning electron microscope and transmission electron microscope images shows that layered particles of about 100 to 300 nm was aggregated as micro-sized particles after pulverization for 720 minutes. As the grinding time increases, the particle size and morphology of talc continuously change, but the nano-sized talc particles form micro sized agglomerates. These results suggest that there is a critical size along the a, b axes in which the size of plates is reduced even though the grinding proceeds, and the reduction of plate thickness along the c axis leads the increase in specific surface area with further grinding. This study could enhance the understanding of the mechanism of the formation of nano-sized talc by mechanical grinding.

활석은 T-O-T 구조의 함수 마그네슘 층상규산염 광물로서, 화학적 안정성과 흡착성 등의 특성을 가지고 있어 다양한 산업분야에서 첨가제, 코팅제 등으로 활용되어 왔다. 최근 나노 복합체의 안정성 향상을 위한 첨가제로서 활석 나노입자가 각광받고 있다. 본 연구에서는 고에너지 볼 밀을 이용하여 기계적인 방법으로 활석 나노입자를 형성하고, 분쇄시간에 따른 입자크기 및 결정도의 변화를 알아보고자 하였다. X-선 회절 분석 결과, 분쇄가 진행됨에 따라 활석의 피크 폭이 점진적으로 증가하여 720분 분쇄 후, 활석은 비정질에 가까운 X-선 회절패턴을 보여준다. 레이저회절 입도 분석 결과, 약 $12{\mu}m$이었던 활석의 입도는 분쇄가 진행됨에 따라 약 $0.45{\mu}m$까지 감소하였으나, 120분 이상 분쇄를 진행하여도 뚜렷한 입도의 감소가 관찰되지 않았다. 반면, BET 비표면적은 분쇄 720분까지 꾸준히 증가하여, 분쇄에 따른 입도 또는 형태의 변화가 지속적으로 일어남을 지시한다. 주사전자현미경 및 투과전자현미경 관찰 결과, 720분 분쇄 후 약 100~300 nm 내외의 층상형 입자들이 마이크로 스케일의 응집체로 존재함을 확인하였다. 이와 같은 결과는 분쇄시간이 증가함에 따라 활석의 입자크기 및 형태는 지속적으로 변화하지만, 나노입자의 특성상 재응집이 일어나 마이크로 크기의 응집체를 형성하고 있음을 지시한다. 또한 활석의 분쇄에서 판의 크기, 즉 a축, b축 방향의 길이는 감소 한계가 존재하며, 분쇄가 진행될수록 판의 두께, 즉 c축 방향의 길이 감소가 주된 분쇄 메커니즘으로 생각된다. 본 연구의 결과는 나노 활석의 형성 메커니즘에 대한 이해를 고양할 수 있을 것으로 기대된다.

Keywords

References

  1. Akcay, K., Sirkecioglu, A., Tatlier, M., Savasci, O.T., and Erdem-Senatalar, A. (2004) Wet ball milling of zeolite HY. Powder Technology, 142, 121-128. https://doi.org/10.1016/j.powtec.2004.03.012
  2. Borges, R., Macedo Dutra, L., Barison, A., and Wypych, F. (2016) MAS NMR and EPR study of structural changes in talc and montmorillonite induced by grinding. Clay Minerals, 51, 69. https://doi.org/10.1180/claymin.2016.051.1.06
  3. Castillo, L., Lopez, O., Lopez, C., Zaritzky, N., Garcia, M.A., Barbosa, S., and Villar, M. (2013) Thermoplastic starch films reinforced with talc nanoparticles. Carbohydrate Polymers, 95, 664-674. https://doi.org/10.1016/j.carbpol.2013.03.026
  4. Choi, W.S., Chung, H.Y., Yoon, B.R., and Kim, S.S. (2001) Applications of grinding kinetics analysis to fine grinding characteristics of some inorganic materials using a composite grinding media by planetary ball mill. Powder Technology, 115, 209-214. https://doi.org/10.1016/S0032-5910(00)00341-7
  5. Christidis, G., Makri, P., and Perdikatsis, V. (2004) Influence of grinding on the structure and colour properties of talc, bentonite and calcite white fillers. Clay Minerals, 39, 163-175. https://doi.org/10.1180/0009855043920128
  6. Dellisanti, F., Minguzzi, V., and Valdre, G. (2011) Mechanical and thermal properties of a nanopowder talc compound produced by controlled ball milling. Journal of Nanoparticle Research, 13, 5919-5926. https://doi.org/10.1007/s11051-011-0541-6
  7. Dellisanti, F., Valdre, G., and Mondonico, M. (2009) Changes of the main physical and technological properties of talc due to mechanical strain. Applied Clay Science, 42, 398-404. https://doi.org/10.1016/j.clay.2008.04.002
  8. Dumas, A., Claverie, M., Slostowski, C., Aubert, G., Careme, C., Le Roux, C., Micoud, P., Martin, F., and Aymonier, C. (2016) Fast-Geomimicking using Chemistry in Supercritical Water. Angewandte Chemie International Edition, 55, 9868-9871. https://doi.org/10.1002/anie.201604096
  9. Ferrage, E., Seine, G., Gaillot, A.-C., Petit, S., De Parseval, P., Boudet, A., Lanson, B., Ferret, J., and Martin, F. (2006) Structure of the {001} talc surface as seen by atomic force microscopy: comparison with X-ray and electron diffraction results. European Journal of Mineralogy, 18, 483-491. https://doi.org/10.1127/0935-1221/2006/0018-0483
  10. Filio, J.M., Sugiyama, K., Saito, F., and Waseda, Y. (1994) A study on talc ground by tumbling and planetary ball mills. Powder Technology, 78, 121-127. https://doi.org/10.1016/0032-5910(93)02775-6
  11. Filippov, L.O., Joussemet, R., Irannajad, M., Houot, R., and Thomas, A. (1999) An approach of the whiteness quantification of crushed and floated talc concentrate. Powder Technology, 105, 106-112. https://doi.org/10.1016/S0032-5910(99)00124-2
  12. Hemlata and Maiti, S.N. (2015) Mechanical, morphological, and thermal properties of nanotalc reinforced PA6/SEBS-g-MA composites. Journal of Applied Polymer Science, 132, 41381.
  13. Johnson, R. (1997) Talc. American Ceramic Society Bulletin, 76, 136-137.
  14. Johnson, R. and Virta, R. (2000) Talc. American Ceramic Society Bulletin, 79, 79-81.
  15. Kano, J. and Saito, F. (1998) Correlation of powder characteristics of talc during Planetary Ball Milling with the impact energy of the balls simulated by the Particle Element Method. Powder Technology, 98, 166-170. https://doi.org/10.1016/S0032-5910(98)00039-4
  16. Knieke, C., Sommer, M., and Peukert, W. (2009) Identifying the apparent and true grinding limit. Powder Technology, 195, 25-30. https://doi.org/10.1016/j.powtec.2009.05.007
  17. Mio, H., Kano, J., Saito, F., and Kaneko, K. (2002) Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball milling. Materials Science and Engineering: A, 332, 75-80. https://doi.org/10.1016/S0921-5093(01)01718-X
  18. Ober, J.A. (2018) Mineral commodity summaries 2018. US Geological Survey.
  19. Rayner, J. and Brown, G. (1973) The crystal structure of talc. Clays and Clay Minerals, 21, 103-114. https://doi.org/10.1346/CCMN.1973.0210206
  20. Sanchez-Soto, P.J., Wiewiora, A., Aviles, M.A., Justo, A., Perez-Maqueda, L.A., Perez-Rodriguez, J.L., and Bylina, P. (1997) Talc from Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape. Applied Clay Science, 12, 297-312. https://doi.org/10.1016/S0169-1317(97)00013-6
  21. Shin, H., Lee, S., Suk Jung, H., and Kim, J.-B. (2013) Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill. Ceramics International, 39, 8963-8968. https://doi.org/10.1016/j.ceramint.2013.04.093
  22. Viti, C. (2011) Exploring fault rocks at the nanoscale. Journal of Structural Geology, 33, 1715-1727. https://doi.org/10.1016/j.jsg.2011.10.005
  23. Yousfi, M., Livi, S., Dumas, A., Le Roux, C., Crepin-Leblond, J., Greenhill-Hooper, M., and Duchet- Rumeau, J. (2013) Use of new synthetic talc as reinforcing nanofillers for polypropylene and polyamide 6 systems: thermal and mechanical properties. Journal of Colloid and Interface Science, 403, 29-42. https://doi.org/10.1016/j.jcis.2013.04.019
  24. Zazenski, R., Ashton, W.H., Briggs, D., Chudkowski, M., Kelse, J.W., Maceachern, L., McCarthy, E.F., Nordhauser, M.A., Roddy, M.T., Teetsel, N.M., Wells, A.B., and Gettings, S.D. (1995) Talc: Occurrence, Characterization, and Consumer Applications. Regulatory Toxicology and Pharmacology, 21, 218-229. https://doi.org/10.1006/rtph.1995.1032
  25. 김건영(2000) 산업광물로서의 활석. 광물과 산업, 13, 51-63 (in Korean without English abstract).

Cited by

  1. 활석 분쇄에 따른 함수율 및 열적거동 변화: 단층의 반복되는 미끌림이 단층 약화에 미치는 영향 vol.32, pp.3, 2018, https://doi.org/10.9727/jmsk.2019.32.3.201
  2. Effects of Ball Size on the Grinding Behavior of Talc Using a High-Energy Ball Mill vol.9, pp.11, 2018, https://doi.org/10.3390/min9110668