• Title/Summary/Keyword: Nano-coating

Search Result 765, Processing Time 0.029 seconds

Simulation on Reflectance from Solar Cell Surface Using Double Layered Anti-Reflective Coating (Double layer 반사방지막 구조에 대한 태양전지 표면 반사율 simulation)

  • Ra, Chang-Ho;Yang, Cheng;Yoo, Won-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • In this paper, we conducted MATLAB simulation using the reflectance formula and the Planck's black body radiation principle, for the purpose of identifying the opimum material and thickness of anti-reflective coating from double layered structures. We found that the optimum condition was obtained when refractive index of upper layer is 1.44 and that of lower layer is 2.29. As materials close to these refractive indices, $MgF_2$ as the upper layer and $HfO_2$, ZnS, $TiO_2$ as the lower layer were suggested. The best result in an average reflectance of 2.759% was obtained from a double layered structure of $MgF_2$ 94 nm/ZnS 55 nm.

Synthesis of Nano-Zirconia by Chemical Process and Its Application to Optical Display (화학적 공정에 의한 나노 지르코니아 합성 및 광학디스플레이 응용)

  • Park, Jung Ju;Kim, Bong Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.609-614
    • /
    • 2020
  • 3 mol% yttria-doped stabilized zirconia (3YSZ) is synthesized by a solvothermal process, and its characteristics are investigated using various methods. Also, the dispersibility of synthesized 3YSZ nanoparticles is observed with the species of surface modifier. The 3YSZ nano sol prepared with an optimum condition is employed in prism coating and its properties are evaluated. The synthesized 3YSZ nanoparticles show a globular shape with about 10 to 20 nm crystallite size. The mixed phases with the nano sol show a high specific surface of 178 ㎡/g. The prism sheet coated with the 3YSZ nano sol present an excellent refractive index, transmittance, and luminance; refractive index is 1.603, transmittance is 90.2 %, and luminance of coating film is improved by 5.9 % compared to that of the film without 3YSZ nano sol. It is verified that the surface modified 3YSZ is suitable as the prism sheet for optical displays.

Tribological Behavior of Thermally Sprayed Nano Composite Chromium Carbide (크로뮴 카바이드 나노 분말을 이용한 용사코팅 층의 내마모 특성에 관한 연구)

  • 이정엽;신종한;임대순;안효석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.42-48
    • /
    • 2001
  • Chromium carbides have the excellent wear properties as transition metal carbides. Their tribological applications were studied recently. The nano-sized ceramic could enhance the mechanical and electronical properties of materials. In this study, it was observed to test the wear of the coated surface of nano-sized chromium carbides. The nano-sized chromium carbides were produced by sol-gel processing. Coating surface of produced powders was obtained front plasma spraying. Wear test of coating surface was held increasing temperature. The friction coefficient and the wear loss were testified in dry environment. And the worn surfaces were analyzed by XRD and SEM.

  • PDF

Nanotribological characteristics of silicon surfaces modified by IBAD (IBAD로 표면개질된 실리콘표면의 나노 트라이볼로지적 특성)

  • 윤의성;박지현;양승호;공호성;장경영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.127-134
    • /
    • 2001
  • Nano adhesion and friction between a Sj$_3$N$_4$ AFM tip and thin silver films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various ranges of normal load. Thin silver films deposited by IBAD (ion beam assisted deposition) on Si-wafer (100) and Si-wafer of different surface roughness were used. Results showed that nano adhesion and friction decreased as the surface roughness increased. When the Si surfaces were coated by pure silver, the adhesion and friction decreased. But the adhesion and friction were not affected by the thickness of IBAD silver coating. As the normal force increased, the adhesion forces of bare Si-wafer and IBAD silver coating film remained constant, but the friction forces increased linearly. Test results suggested that the friction was mainly governed by the adhesion as long as the normal load was low.

  • PDF

A Study on Microstructure, Mechanical Properties, Friction and Adhesion of TiN Thin Films Coated on SKD61 and Radical Nitrided SKD61 Substrates by Arc Ion Plating (SKD61과 Radical Nitriding 처리된 SKD61 기판상에 Arc Ion Plating으로 증착된 TiN 박막의 미세구조 및 기계적 특성, 마찰 및 접착력에 관한 연구)

  • Joo, Yun-Kon;Yoon, Jae-Hong;Fang, Wei;Zhang, Shi-Hong;Cho, Tong-Yul;Ha, Sung-Sik
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.6
    • /
    • pp.254-257
    • /
    • 2007
  • TiN coating on tool steel has been widely used for the improvement of durability of tools. In this work, radical nitriding(RN) is carried out on SKD61 at $450^{\circ}C$ for 5 hours in the ammonia gas pressure $2.7{\times}10^3\;Pa$. The TiN coating is carried out by arc ion plating(AIP) with the process parameters: arc power 150 A, bias voltage -50V, coating time 40 minutes and nitrogen gas pressure $4{\times}10^3\;Pa$. Hardness, elastic modulus, friction coefficient and adhesion of TiN coating on substrates of both TiN/SKD61 and TiN/RN SKD61 coatings are investigated comparatively. The primary crystalline faces of TiN surface are(200) and(111) for TiN/SKD61 and TiN/RN SKD61 respectively. In addition to the primary phase, Fe phase exists in TiN/SKD61 coating, but not in TIN/RN SKD61. The hardness of TiN/RN SKD61 is about 700 Hv, 250 Hv(56%) higher than that of TiN/SKD61 at the near interface of TiN and substrates. At the TiN surface, hardness of TiN/RN SKD61 is 2,149 Hv, 71 Hv(3%) higher than that of TiN/SKD61. The elastic modulus of TiN coating is improved to 26.7 GPa(6%) by radical nitriding. The adhesion is improved by the RN coating showing no spalling. buckling and chipping on the scratch test track which are shown on the non-RN TiN/SKD61.

Characterization and hydrothermal surface modification of non-swelling property mica using nano silver (은나노를 이용한 비팽윤성 운모의 수열적인 표면개질 및 특성평가)

  • Seok, Jeong-Won;Park, Ra-Young;Kim, Pan-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.4
    • /
    • pp.172-178
    • /
    • 2007
  • Mica (muscovite) powders were synthesized by hydrothermal method (horizontal turning method). The hydrothermal conditions for the synthesis of mica were prepared by the ratio of $K_2O : Al(OH)_3 : SiO_2$ = 1 : 3 : 3 mol% as the starting materials with KOH (8 mol%) solution as the hydrothermal solvent and reaction temperature at $260^{\circ}C$ for 72hrs. The synthetic powder used for preparation of nano silver coated mica by vertical hydrothermal treatment. The hydrothermal conditions for the treated as nano silver coating were prepared by the synthetic powder as raw materials, triple distilled water ($0.5{\ell}$) solution as the hydrothermal solvent with nano silver sol (1,000 ppm) as the material of nano silver coating and reaction temperature at $160{\sim}260^{\circ}C$ for 72 hrs. After hydrothermal treatment, structural, judgment of nano silver coating and character of nano silver coated mica were examined by XRD, SEM, TEM-EDX and shake plask method.

Photoluminescence Studies of ZnO Nanostructures Fabricated by Using Combination of Hydrothermal Method and Plasma-Assisted Molecular Beam Epitaxy Regrowth

  • Nam, Giwoong;Kim, Byunggu;Park, Youngbin;Kim, Soaram;Lee, Sang-Heon;Kim, Jong Su;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.202.1-202.1
    • /
    • 2013
  • ZnO nanostructure was fabricated on a Si substrate using two-step growth. The seed layer was grown on the Si substrate by a sol-gel spin-coating. In the first step, ZnO nanorods were grown by a hydrothermal method at $140^{\circ}C$ for 5 min. In the second step, a ZnO thin film was grown on the ZnO nanorods by spin-coating. After growth, these films were annealed at $800^{\circ}C$ for 10 min. Electrical and optical properties of ZnO nanostructures have modified by plasma-assisted molecular beam epitaxy (PA-MBE) regrowth. The carrier concentration and resistivity increased by PA-MBE regrowth. In the photoluminescence, the full width at half maximum and intensity were decreased and increased, respectively, by PA-MBE regrowth.

  • PDF

Microproperties and Fracture Behavior of Galvannealed Coating Layer of Automobiles (자동차용 합금화 용융아연도금강판의 도금층 미소물성 및 파괴 거동)

  • Park, Chun-Dal;Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.91-99
    • /
    • 2007
  • Fractures of galvannealed coating layer during actual press forming in automotive applications were observed by scanning electron microscopy in order to understand fracture mechanism. Fracture behaviors of galvannealed coating layer in extra deep drawing quality steels and high strength steels have been studied by performing the tests describing the representative plastic deformation in sheet metal forming such as uni-axial tensile test, compression test, bi-axial test and plane strain test. Growth and direction of cracks were deeply related to the plastic deformation modes and history. The material properties of galvannealed coating layer were investigated by nano-indentation test equipped with Berkovich diamond indentor for the specimens. Hardness and elastic modulus of the coating layer were higher than bared steels and that was the reason for crack of coating layer. Flat friction test and drawbead friction test were performed to observe the effect of the surface morphology on the frictional characteristics. The micro-plasto hydrodynamic lubrication were appeared and played an important role in reducing the coefficient of friction.

Application of ta-C Coating on WC Mold to Molded Glass Lens

  • Lee, Woo-Young;Choi, Ju-hyun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.106-113
    • /
    • 2019
  • We investigated the application of tetrahedral amorphous carbon (ta-C) coatings to fabricate a glass lens manufactured using a glass molding process (GMP). In this work, ta-C coatings with different thickness (50, 100, 150 and 200 nm) were deposited on a tungsten carbide (WC-Co) mold using the X-bend filter of a filtered cathode vacuum arc. The effects of thickness on mechanical and tribological properties of the coating were studied. These ta-C coatings were characterized by atomic force microscopy, scanning electron microscopy, nano-indentation measurements, Raman spectrometry, Rockwell-C tests, scratch tests and ball on disc tribometer tests. The nano-indentation measurements showed that hardness increased with an increase in coating thickness. In addition, the G-peak position in the Raman spectra analysis was right shifted from 1520 to $1586cm^{-1}$, indicating that the $sp^3$ content increased with increasing thickness of ta-C coatings. The scratch test showed that, compared to other coatings, the 100-nm-thick ta-C coating displayed excellent adhesion strength without delamination. The friction test was carried out in a nitrogen environment using a ball-on-disk tribometer. The 100-nm-thick ta-C coating showed a low friction coefficient of 0.078. When this coating was applied to a GMP, the life time, i.e., shot counts, dramatically increased up to 2,500 counts, in comparison with Ir-Re coating.

Coating Performance of SiO2 / Epoxy Composites as a Corrosion Protector

  • Rzaij, Dina R.;Ahmed, Nagham Y.;Alhaboubi, Naseer
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • To solve the corrosion problem of industrial equipment and other constructions containing metals, corrosion protection can be performed by using coating which provides a barrier between the metal and its environment. Coatings play a significant role in protecting irons and steels in harsh marine and acid environments. This study was conducted to identify an anti-corrosive epoxy coating for carbon steel composite with 0.1, 0.3, and 0.5 wt% concentrations of nanoparticles of SiO2 using the dip-coating method. The electrochemical behavior was analyzed with open circuit potential (OCP) technics and polarization curves (Tafle) in 3.5 wt% NaCl and 5 vol% H2SO4 media. The structure, composition, and morphology were characterized using different analytical techniques such as X-ray Diffraction (XRD), Fourier Transform Infrared spectrum (FT-IR), and Scanning Electron Microscopy (SEM). Results revealed that epoxynano SiO2 coating demonstrated a lower corrosion rate of 2.51 × 10-4 mm/year and the efficiency of corrosion protection was as high as 99.77%. The electrochemical measurement showed that the nano-SiO2 / epoxy coating enhanced the anti-corrosive performance in both NaCl and H2SO4 media.