• Title/Summary/Keyword: Nano-Structured Carbon

Search Result 28, Processing Time 0.025 seconds

Electrical Properties of MIM and MIS Structure using Carbon Nitride Films

  • Lee, Hyo-Ung;Lee, Sung-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.257-261
    • /
    • 2006
  • Nano-structured carbon nitride $(CN_x)$ films were prepared by reactive RF magnetron sputtering with a DC bias at various deposition conditions, and the physical and electrical properties were investigated. FTIR spectrum indicated an ${alpha}C_3N_4$ peak in the films. The carbon nitride film deposited on Si substrate had a nano-structured surface morphology. The grain size was about 20 nm and the deposition rate was $1.7{\mu}m/hr$. When the $N_2/Ar$ ratio was 3/7, the level of nitrogen incorporation was 34.3 at%. The film had a low dielectric constant. The metal-insulator-semiconductor (MIS) capacitors that the carbon nitride was deposited as insulators, exhibited a typical C-V characteristics.

Synthesis of Porous Carbon Particles for the Absorption of Mercury (액상수은 제어를 위한 다공성 탄소입자 제조에 관한 연구)

  • Lee, Jung-Min;Kang, Shin-Jae;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.305-305
    • /
    • 2009
  • The carbon nano-structured materials could be applied to the fields of advanced fillers, templates, electrode materials, sensor, storage, and absorption materials. The polyacrylonitrile (PAN) based carbon nano-particles provide the remarkable properties of high specific surface area, large pore volume, chemical inertness, and good mechanical stability. In this study, well-defined carbon nano-particles were obtained through pyrolysis of polyacrylonitrile based particles. The precursor nano-particles were prepared by modified aqueous dispersion polymerization using hydrophilic poly(vinyl alcohol) in a water/ N,N-dimethylformamide mixture media. Synthesized precursor nanoparticles have relatively monodisperse particles ranging 80 ~ 250nm. Stable spherical particles are obtained without coagulum or secondary particles in our system. The characteristic of the carbon nanoparticles were investigated in terms of surface area, morphology, and size distribution.

  • PDF

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • Hoa, Nguyen Duc;Quy, Nguyen Van;O, Dong-Hun;Wei, Li;Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF

Fabrication of nano-structured PMMA substrates for the improvement of the optical transmittance (반구형 나노 패턴의 크기에 따른 PMMA기판의 광특성 평가)

  • Park, Y.M.;Shin, H.G.;Kim, B.H.;Seo, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.217-220
    • /
    • 2009
  • This paper presents fabrication method of nano-structured PMMA substrates as well as evaluations of their optical transmittance. For anti-reflective surface, surface coating method had been conventionally used. However, it requires high cost, complicated process and post-processing times. In this study, we suggested the fabrication method of anti-reflective surface by the hot embossing process. Using the nano patterned master fabricated by anodic aluminum oxidation process. Anodic aluminum oxide(AAO) is widely used as templates or a molds for various applications such as carbon nano tube (CNT), nano rod and nano dots. Anodic aluminum oxidation process provides highly ordered regular nano-structures on the large area, while conventional pattering methods such as E-beam and FIB can fabricate arbitrary nano-structures on small area. We fabricated a porous alumina hole array with various inter-pore distance and pore diameter. In order to replicate nano-structures using alumina nano hole array patterns, we have carried out hot-embossing process with PMMA substrates. Finally the nano-structured PMMA substrates were fabricated and their optical transmittances were measured in order to evaluate the charateristivs of anti-reflection. Anti-reflective structure can be applied to various displays and automobile components.

  • PDF

Synthesis of Core/shell Structured Ag/C Nano Particles and Properties on Annealing Conditions (전기선폭발법을 이용한 core/shell 구조 Ag/C 나노 입자의 제조 및 열처리조건에 따른 특성)

  • Jun, S.H.;Uhm, Y.R.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.295-301
    • /
    • 2010
  • Multi shell graphite coated Ag nano particles with core/shell structure were successfully synthesized by pulsed wire evaporation (PWE) method. Ar and $CH_4$ (10 vol.%) gases were mixed in chamber, which played a role of carrier gas and reaction gas, respectively. Graphite layers on the surface of silver nano particles were coated indiscretely. However, the graphite layers are detached, when the particles are heated up to $250^{\circ}C$ in the air atmosphere. In contrast, the graphite coated layer was stable under Ar and $N_2$ atmosphere, though the core/shell structured particles were heated up to $800^{\circ}C$. The presence of graphite coated layer prevent agglomeration of nanoparticles during heat treatment. The dispersion stability of the carbon coated Ag nanoparticles was higher than those of pure Ag nanoparticles.

Support Effect of Nano Structured Carbon Nano Sphere and Nano Bowl of Carbon in the Phenol Hydroxylation and its Solvent Dependence (나노구조를 갖는 중공구형 및 중공반구형 다공성 탄소 담체가 페놀 수산화 반응에 미치는 영향 및 용매 의존도)

  • Kwon, Song Yi;Yoon, Songhun;Kim, Hui-Yeong;Lee, Jae Wook;Lee, Chul Wee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.423-427
    • /
    • 2010
  • Carbon nano sphere(CNS) and nano bowl of carbon(NBC) containing 1.0 wt% copper were prepared by impregnation method and their catalytic activity was compared in the phenol hydroxylation with hydrogen peroxide in the presence of water and acetonitrile as a solvent, respectively. Cu content of catalysts was determined by EDS, and BET, pore volume, pore size and pore size distribution were compared. For both catalysts, phenol conversion, $H_2O_2$ efficiency and yield of catechol and hydroquinone were higher in the presence of water as a solvent than those in the presence of actonitrile. And catalytic activity such as phenol conversion and $H_2O_2$ efficiency of 1.0 Cu/CNS is about two times higher than that of 1.0 Cu/NBC in water solvent.

Synthesis and Properties of Dual Structured Carbon Nanotubes (DSCNTs)

  • Cho, Se-Ho;Kim, Do-Yoon;Heo, Jeong-Ku;Lee, Young-Hee;An, Kay-Hyeok;Kim, Shin-Dong;Lee, Young-Seak
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.277-281
    • /
    • 2006
  • In this study, in order to easily provide functional groups on the surface of carbon nanotubes, dual structural multiwalled carbon nanotubes which have crystalline graphite and turbostratic carbon wall were synthesized by modified vertical thermal decomposition method. Synthesized dual structural MWCNTs were characterized by FE-SEM, TGA, HR-TEM, Raman spectroscopy and BET specific surface area analyzer. The average innermost and outermost diameters of the synthesized nanotubes were around 45 and 75 nm, respectively. The large empty inner space and the presence of graphitic carbons on the surface may open potential applications for gas storage and collection of hazardous materials.

  • PDF

Synthesis of Nano Structured Silica and Carbon Materials and Their Application (계면활성제를 이용한 나노 실리카 및 카본 소재의 합성과 응용)

  • Park Seungkyu;Kim Jongyun;Cho Wangoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.321-328
    • /
    • 2004
  • Nano silica ball and nano carbon ball are developed commercially by template synthesis method. Adsorption of unpleasant smelling substances such as ammonia, trimethylamine, acetaldehyde and methyl mercaptane onto nano carbon ball with hollow macroporous core/mesoporous shell structures, nano carbon ball, was investigated and compared with that onto odor adsorbent materials, activated carbon, commercially available. The adsorption and decomposition of malodor at nano carbon ball exhibited superior than those onto activated carbon. The physicochemical properties such as mesopore size distributions, large nitrogen BET specific surface area and large pore volume and decomposition of malodor were studied to interpret the predominant adsorption performance. The nano carbon ball is expected to be useful in many applications such as deodorizers, adsorbent of pollutants.

Plant responses to nano and micro structured carbon allotropes: Water imbibition by maize seeds upon exposure to multiwalled carbon nanotubes and activated carbon

  • Dasgupta-Schubert, N.;Tiwari, D.K.;Francis, E. Reyes;Martinez Torres, P.;Villasenor Cendejas, L.M.;Lara Romero, J.;Villasenor Mora, C.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.245-251
    • /
    • 2017
  • Multiwalled carbon-nanotubes (MWCNT) and micro-structured carbon, such as biochar or activated carbon (AC), have been seen to significantly increase the growth indices of certain plant species such as maize (Zea mays L.). Seed imbibition is the stage where environmental factors that affect water transport across the seed coat barrier, make a large impact. This work explores the effect on water imbibition by maize seeds when the aqueous environment surrounding the seed is diluted by small concentrations (10 and 20 mg/l) of pristine MWCNT (p-MWCNT), carboxylate functionalized MWCNT (COO-MWCNT) and AC. The degree of sensitivity of the process to (i) large structural changes is seen by utilizing the nano (the MWCNT) and the micro (the AC) allotropic forms of carbon; (ii) to small changes in the purity and morphology of the p-MWCNT by utilizing 95% pure and 99% pure p-MWCNTs of slightly differing morphologies; and (iii) to MWCNT functionalization by using highly pure (97%) COO-MWCNT. Water imbibition was monitored over a 15 hour period by Near Infrared Thermography (NIRT) and also by seed weighing. Seed surface topography was seen by SEM imaging. Analysis of the NIRT images suggests rapid seed surface topological changes with the quantity of water imbibed. While further work is necessary to arrive at a conclusive answer, this work shows that the imbibition phase of the maize seed is sensitive to the presence of MWCNT even to small differences in the purity of the p-MWCNT and to small differences in the physicochemical properties of the medium caused by the hydrophilic COO-MWCNT.

Electrochemical Characteristics of DAAQ/CNFs electrode for Supercapacitor (슈퍼커패시터용 DAAQ/CNFs 전극의 전기화학적 특성)

  • Kim, Hong-Il;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1184-1187
    • /
    • 2003
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. A new type electric double layer capacitor (EDLC) was constructed by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. Carbonaceous materials are found in variety forms such as graphite, diamond, carbon fibers etc. While all the carbon nanofibers include impurities such as amorphous carbon, nanoparticles, catalytic metals and incompletely grown carbons. We have eliminated of Ni particles and some carbonaceous particles in nitric acid. Nitric acid treated CNFs could be covered with very thin DAAQ oligomer from the results of CV and TG analyses and SEM images. DAAQ oligomer film exhibited a specific capacity as 45-50 Ah/kg in 4M $H_2SO_4$. We established Process Parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured CNFs electrodes using controlled solution chemistry. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF