• 제목/요약/키워드: Nano-Encapsulation

검색결과 80건 처리시간 0.026초

마황 추출물의 나노 입자화를 통한 항암 활성 증진 (Enhancement of Anticancer Activities of Ephedra sinica Stapf Extracts by Nano-encapsulation)

  • 정향숙;김승섭;오성호;정명훈;최운용;서용창;나천수;곽형근;이현용
    • 한국약용작물학회지
    • /
    • 제18권3호
    • /
    • pp.143-150
    • /
    • 2010
  • This study showed the increase of antitumor activities of water soluble E. sinica extract by nano-encapsulation process with lecithin. Five groups of lecithin only group (LO), lecithin nano-encapsulated E. sinica group (LE), E. sinica only group (EO), one negative control group (NCO) and positive control group (PCO) were set for several anticancer experiment and fed into Sarcoma-180 injected mice. The cytotoxicity of LE on the human normal kidney cell (HEK293) showed 14.8% lower than 19.2% of EO and 18.4% of LO. Growth of human liver carcinoma cell and human stomach carcinoma cell as representative of digestive system in vitro was inhibited up to about 85.1% and 87.3%, in adding 1.0 mg/$m{\ell}$ of LE, which values 15% higher than that from conventional EO. The survival rates of each mice group were 40%, 63%, 48%, 33% and 100%, respectively after 40 days of injecting Sarcoma-180. The increment of their body weights of the extract feeding groups was suppressed down to 10~15%, compared to the negative control. The nano-particles also reduced the hypertrophy of the internal organs such as spleen and liver down to 15~20%, compared to those as the other groups. Among them, LE effectively reduced the size of tumor form to 20%. From these results, in vitro and in vivo antitumor activities of E. sinica could be enhanced by using nano-encapsulation process with lecithin because of better permeation into the cancer cells by confocal observations.

고로쇠 수피 수용성 추출물의 나노입자화를 통한 항암활성 증진 (Enhancement of Anticancer Activity of Acer mono Aqueous Extracts by Nano-Encapsulation Process)

  • 김지선;정명훈;최운용;서용창;조정섭;이현용
    • 한국산림과학회지
    • /
    • 제100권1호
    • /
    • pp.14-24
    • /
    • 2011
  • 고로쇠 수피 수용성 추출물의 나노입자화를 통하여 항암활성 증진에 대하여 연구하였다. 먼저 세포독성 측정결과 인간 정상 폐 세포(HEL299)에 대하여 일반 열수 추출물이 1.0 mg/mL의 농도에서 23.51%로 나노입자에 비하여 낮은 세포독성을 나타내었다. 그리고 DPPH radical 소거 활성 실험결과 고로쇠 추출물 나노입자가 높은 항산화 활성을 나타내었고, SOD 유사활성 결과에서도 1.0 mg/mL의 농도에서 32.33%로 일반 열수 추출물에 비하여 높은 항산화 활성을 나타내었다. 인간 위암세포, 간암세포, 유방암세포 그리고 폐암세포에 대하여 암세포 억제 활성 측정결과 고로쇠 추출물 나노입자의 경우 1.0 mg/mL의 농도에서 59-73%의 억제 활성을 나타내었다. 나노입자의 경우 일반 열수 추출물에 비하여 약 5-10% 이상 증진된 활성을 보였다. 그리고 여러 인간 암세포주에 대한 항암실험 결과, 소화기계통의 암세포주에 대하여 71-73%의 암세포 억제 활성을 나타내어 다른 암세포주에 비하여 높은 암세포억제 활성을 보였다. 이러한 결과를 인간 위암세포인 AGS로의 나노입자 침투를 confocal microscope 관찰을 통하여 확인하였다. 위와 같은 결과를 바탕으로 하여 고로쇠 추출물을 나노입자화 공정을 통하여 활성 증진을 확인하였고, 천연 항산화제, 항암소재로서의 활용이 가능할 것으로 사료된다.

A DFT Study on Alkali and Alkaline Earth Metal Encapsulated Fullerene-Like BeO Cluster

  • Ravaei, Isa;Beheshtian, Javad
    • 대한화학회지
    • /
    • 제61권6호
    • /
    • pp.311-319
    • /
    • 2017
  • By using Density Functional Theory (DFT), we have performed alkali metal and alkaline earth metal inside fullerene-like BeO cluster (FLBeOC) in terms of energetic, geometric, charge transfer, work function and electronic properties. It has been found that encapsulated processes of the alkali metal are exothermic and thermodynamically more favorable than alkaline earth metal encapsulation, so that interaction energy ($E_{int}$) of the alkali metal encapsulation FLBeOC is in the range of -0.02 to -1.15 eV at level of theory. It is found that, the electronic properties of the pristine fullerene-like BeO cluster are much more sensitive to the alkali metal encapsulation in comparison to alkaline earth metal encapsulation. The alkali and alkaline earth metal encapsulated fullerene-like BeO cluster systems exhibit good sensitivity, promising electronic properties which may be useful for a wide variety of next-generation nano-sensor device components. The encapsulation of alkali and alkali earth metal may increase the electron emission current from the FLBeOC surface by reducing of the work function.

Evaluation of Bacillus velezensis for Biological Control of Rhizoctonia solani in Bean by Alginate/Gelatin Encapsulation Supplemented with Nanoparticles

  • Moradi-Pour, Mojde;Saberi-Riseh, Roohallah;Esmaeilzadeh-Salestani, Keyvan;Mohammadinejad, Reza;Loit, Evelin
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1373-1382
    • /
    • 2021
  • Plant growth promoting rhizobacteria (PGPR) are a group of bacteria that can increase plant growth; but due to unfavorable environmental conditions, PGPR are biologically unstable and their survival rates in soil are limited. Therefore, the suitable application of PGPR as a plant growth stimulation is one of the significant challenges in agriculture. This study presents an intelligent formulation based on Bacillus velezensis VRU1 encapsulation enriched with nanoparticles that was able to control Rhizoctonia solani on the bean. The spherical structure of the capsule was observed based on the Scanning Electron Microscope image. Results indicated that with increasing gelatin concentration, the swelling ratio and moisture content were increased; and since the highest encapsulation efficiency and bacterial release were observed at a gelatin concentration of 1.5%, this concentration was considered in mixture with alginate for encapsulation. The application of this formulation which is based on encapsulation and nanotechnology appears to be a promising technique to deliver PGPR in soil and is more effective for plants.

고로쇠 수액 나노입자의 항산화 활성 및 미백 효과의 증진 (Enhancement of Antioxidant Activities and Whitening Effect of Acer mono Sap Through Nano Encapsulation Processes)

  • 김지선;서용창;최운용;김학수;김보현;신대현;윤창순;임혜원;안주희;이현용
    • 한국약용작물학회지
    • /
    • 제19권3호
    • /
    • pp.191-197
    • /
    • 2011
  • In this study, we investigated antioxidant activities and whitening effects of Acer mono sap by encapsulation of nanoparticles. Acer mono sap was through ultra high pressure process and then encapsulated by lecithin. Nano-encapsulated The nanoparticles of Acer mono sap showed highest free radical scavengering effect as 89.7% in adding sample (1.0 mg/ml), compared to sap of non-encapsulation. It was showed strong inhibition effect on melanin production test by Clone M-3 cells as 47.8%. High inhibitory of tyrosinase was also measured as 85.8% by adding lecithin nano-particle of 1.0 mg/ml. The nano-particles also showed 14.8% of low cytotoxicity against human normal fibroblast cells in adding 1.0 mg/ml of the highest concentration. These results indicate that Acer mono sap may be a source of cosmetic agents capable of improving whitening effect and antioxidant activites.

Advanced Permeation Properties of Solvent-free Multi-Layer Encapsulation of thin films on Ethylene Terephthalate(PET)

  • Han, Jin-Woo;Kang, Hee-Jin;Kim, Jong-Yeon;Kim, Jong-Hwan;Han, Jung-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Kim, Hwi-Woon;Seo, Dae-Shik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.973-976
    • /
    • 2006
  • In this paper, the inorganic multi-layer encapsulation of thin film was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter, inorganic multi-layer thin-film encapsulation was deposited onto the Ethylene Terephthalate(PET) and their interface properties between inorganic and organic layer were investigated. In this investigation, the SiON $SiO_2$ and parylene layer showed the most suitable properties. Under these conditions, the water vapor transmission rate (WVTR) for PET can be reduced from level of $0.57g/m^2/day$ (bare substrate) to $1^{\ast}10^{-5}g/m^2/day$ after application of a SiON and $SiO_2$ layer. These results indicate that the $PET/SiO_2/SiON/Parylene$ barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

  • PDF

Encapsulation of Nanomaterials within Intermediary Layer Cross-linked Micelles Using a Photo-Cross-linking Agent

  • Kim, Jin-Sook;Youk, Ji-Ho
    • Macromolecular Research
    • /
    • 제17권11호
    • /
    • pp.926-930
    • /
    • 2009
  • A new method for encapsulating nanomaterials within intermediary layer cross-linked (ILCL) polymeric micelles using a bifunctional photo-cross-linking agent was developed. For ILCL polymeric micelles, an amphiphilic triblock copolymer of poly(ethylene glycol)-b-poly(2-hydroxyethyl methacrylate)-b-poly(methyl methacrylate) (PEG-PHEMA-PMMA) was synthesized via consecutive atom transfer radical polymerization (ATRP), Di(4-hydroxyl benzophenone) dodecanedioate (BPD) was used as a bifunctional photo-cross-linking agent. The PMMA-tethered Au nanoparticles and BPD, or pyrene and BPD were encapsulated in the PEG-PHEMA-PMMA micelles, and their intermediary layers were photo-cross-linked by UV irradiation for 1 h. The HEMA units donated labile hydrogens to the excited-state benzophenone groups in BPD, and they were subsequently cross-linked by BPD through radical-radical combination. The spherical structures of the PEG-PHEMA-PMMA micelles containing the Au nanoparticles or pyrene were unaffected by the photo-cross-linking process.

이중 유제 방법으로 제조된 PLGA 미립자들과 반구체:특성과 라니티딘(ranitidine)의 방출 양상 (PLGA particles and half-shells prepared by double emulsion method: characterization and release profiles of ranitidine )

  • 남대식;김성철;강수용;오돈치멕문크자갈;심영기;이우경
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권2호
    • /
    • pp.99-104
    • /
    • 2008
  • PLGA micro/nano particles encapsulating ranitidine as a hydrophilic model drug were prepared by the double-emulsion solvent evaporation method. Surface morphology investigation by scanning electron microscope (SEM) showed that the emulsification by sonication could produce nanoparticles, whereas microparticles were prepared using high speed homogenizer. Moreover, while nanohalf-shell structure instead of spherical nanoparticle could be produced by adding poloxamer into oil phase (MC) with PLGA 504H, the addition of poloxamer didn't change particle shape in case of PLGA 502H. On the other hand, microparticle with poloxamer had more surface pores than those without poloxamer. The size and polydispersity (PDI) of particles were determined by particle size analyzer. Effective diameters of particles were in the range of $400{\sim}800\;nm$ and $1200{\sim}3300\;nm$ in case of nanoparticles and microparticles, respectively. Encapsulation efficiencies were in the range of $1.2{\sim}2.9%$. The addition of poloxamer produced the particles with higher encapsulation efficiency. In vitro release study in phosphate buffer (pH 7.4) at $37^{\circ}C$ showed common large initial burst release. However, the relative slower release profile could be observed in case of microparticles. Poloxamer addition increased the release rate, which was thought to be related to the increased surface area of particles.

코아 가교 양친성 고분자 나노입자를 이용한 고함량 유용 약물 담지 고분자 나노입자 제조 (Preparation of Valuable Compounds Encapsulated Polymer Nanoparticles with High Payload Using Core-crosslinked Amphiphilic Polymer Nanoparticles)

  • 김나혜;김주영
    • 공업화학
    • /
    • 제27권1호
    • /
    • pp.26-34
    • /
    • 2016
  • 본 연구에서는 반응성 비닐기를 가지고 있는 반응성 양친성 고분자 전구체(Reactive Amphiphilic Reactive Polymer Precursor) (RARP)를 이용하여 제조된 소수성 세그먼트들이 가교된 코아 가교 양친성 고분자(Core-crosslinked Amphiphilic Polymer) (CCAP) 나노입자와 나노침전법을 사용하여서 소수성 유용물질을 고함량으로 담지할 수 있는 새로운 공정을 제안하였다. 극성이 각기 다른 유기용매(에탄올, 아세톤, 테트라하이드로퓨란(THF))들과 소수성 세그먼트 분자량이 다른 CCAP를 사용하여서, 모델 유용 약물인 ${\alpha}$-tocopherol의 담지 효율, 담지량 및 약물 담지 나노입자의 크기와 안정성 변화를 조사하였다. 소수성 세그먼트 분자량이 큰 CCAP와 소수성 용매인 THF를 용매로 사용한 경우에 가장 높은 유용 약물 담지량, 담지 효율을 나타내는 안정한 나노입자가 형성이 되었다. 즉 CCAP 나노입자들의 물리적 화학적으로 견고한 나노 구조로 인해서 33 wt%의 높은 담지량과 97% 이상의 담지 효율을 가지면서 물속에서 70 nm의 크기의 안정한 유용 약물 담지 고분자 나노입자를 제조할 수 있었다.

Preparation of Polymer/Drug Nano- and Micro-Particles by Electrospraying

  • Lee, Jong-Hwi;Park, Chul-Ho;Kim, Min-Young;Yoo, Ji-Youn;Kim, Ki-Hyun;Lee, Jong-Chan
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.217-217
    • /
    • 2006
  • The surface energy control capability of electrohydrodynamic force provides electrospraying with various potential advantages such as simple particle size control, mono-dispersity, high recovery, and mild processing conditions. Herein, the one step nano-encapsulation of protein drugs using electrospraying was developed. The major processing parameters such as the conductivity of spraying liquids, flow rate, the distance between electric potentials, etc were examined to obtain the maximum efficiency. The recovery of particles was found relatively high as could be conjectured based on the principle of electrospraying. When organic solvents were employed, the processing windows of electrospraying were relatively narrow than water systems. Efficient nano-encapsulation of BSA with polymers was conveniently achieved using electrospraying at above 12 kV.

  • PDF