• 제목/요약/키워드: Nano-Composites-Materials

검색결과 393건 처리시간 0.028초

Magnetic Powder and Nano-powder Composites for Electrical Converters

  • Mazurkiewicz, Marian;Rhee, Chang-Kyu;Weglinski, Bogumil
    • 한국분말재료학회지
    • /
    • 제15권4호
    • /
    • pp.320-330
    • /
    • 2008
  • On the base of experience in development of Magnetic Powder Composites, and particularly Soft Magnetic Composites, authors are trying to systematize classification and indicate possible development prospective of Magnetic Nanocomposites (MN) technology and their applications in electrical converters. Clear classification and systematization, at an early stage of any materials and technology development, are essential and lead for better understanding and communication between researchers and industry involved. This concern MN as well and it seems to be the right time to make it at present stage of their development. Presented proposal of classification distinguishes various types of MN by their magnetic properties and area of possible applications. It is not a close set of types, and can be extended due to increase of knowledge concern these nanocomposites.

High performance ultrafine-grained Ti-Fe-based alloys with multiple length-scale phases

  • Zhang, Lai-Chang
    • Advances in materials Research
    • /
    • 제1권1호
    • /
    • pp.13-29
    • /
    • 2012
  • In order to simultaneously enhance the strength and plasticity in nanostructured / ultrafine-grained alloys, a strategy of introducing multiple length scales into microstructure (or called bimodal composite microstructure) has been developed recently. This paper presents a brief overview of the alloy developement and the mechanical behavior of ultrafine-grained Ti-Fe-based alloys with different length-scale phases, i.e., micrometer-sized primary phases (dendrites or eutectic) embedded in an ultrafine-grained eutectic matrix. These ultrafine-grained titanium bimodal composites could be directly obtained through a simple single-step solidification process. The as-prepared composites exhibit superior mechanical properties, including high strength of 2000-2700 MPa, large plasticity up to 15-20% and high specific strength. Plastic deformation of the ultrafine-grained titanium bimodal composites occurs through a combination of dislocation-based slip in the nano-/ultrafine scale matrix and constraint multiple shear banding around the micrometer-sized primary phase. The microstructural charactersitcs associated to the mechanical behaivor have been detailed discussed.

Percolative Electrical Conductivity of Platy Alumina/Few-layer Graphene Multilayered Composites

  • Choi, Ki-Beom;Kim, Jong-Young;Lee, Sung-Min;Lee, Kyu-Hyoung;Yoon, Dae Ho
    • 한국세라믹학회지
    • /
    • 제54권3호
    • /
    • pp.257-260
    • /
    • 2017
  • In this work, we present a facile one-pot synthesis of a multilayer-structured platy alumina/few-layer graphene nanocomposite by planetary milling and hot pressing. The sintered composites have electrical conductivity exhibiting percolation behavior (threshold ~ 0.75 vol.%), which is much lower than graphene oxide/ceramic composites (> 3.0 vol.%). The conductivity data are well-described by the percolation theory, and the fitted exponent values are estimated to be 1.65 and 0.93 for t and q, respectively. The t and q values show conduction mechanisms intermediate between 2D- and 3D, which originates from quantum tunneling between nearest neighbored graphenes.

Microstructural and Mechanical Characteristics of In Situ Synthesized Chromium-Nickel-Graphite Composites

  • Pirso, Juri;Viljus, Mart;Letunovits, Sergei;Juhani, Kristjan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.631-632
    • /
    • 2006
  • Cr-C-Ni composites were synthesized in situ from elemental powders of Cr, Ni and C by high energy milling followed by reactive sintering. The milled powders with the grain size in nano-scale were pressed to compacts and sintered. During the following thermal treatment at first the chromium carbide was formed and then the $Cr_3C_2-Ni$ cermets were sintered in one cycle. The interface between the binder phase and the carbide grains of the in situ composite has a good bonding strength as it is not contaminated with oxidation films or other detrimental surface reactions.

  • PDF

FEA Simulations and Tests of Rubber Insulator for Truck Suspension

  • Hur, Shin;Woo, Chang Su
    • Elastomers and Composites
    • /
    • 제52권4호
    • /
    • pp.303-308
    • /
    • 2017
  • In this study, finite element modeling and material property tests are performed for the finite element analysis of rubber isolator parts which support the engine and isolate the vibration. As a result of the P direction analysis of the rubber isolator parts, the static stiffness in the P direction was 44.2 kg/mm, which is well within the error of 5% as compared with the test result of 46.1 kg/mm. The static stiffness of the rubber isolator parts in the Q direction was calculated to be 7.9 kg/mm, which is comparable to the test result of 8.6 kg/mm, with an error of less than 8%. As a result of the analysis on the Z direction, the static stiffness was calculated as 57.7 kg/mm, and the test results were not available. Through this study, it is expected that the time and cost for prototype development can be reduced through nonlinear finite element analysis for rubber isolator parts.

Preparation and Properties of Hydroxyapatite/Methylcellulose for Bone Graft

  • Tak, Woo-Seong;Kim, Dong-Jun;Ryu, Su-Chak
    • 한국세라믹학회지
    • /
    • 제55권2호
    • /
    • pp.145-152
    • /
    • 2018
  • Although many bone graft materials have been developed, powder graft materials are somewhat difficult to use in surgery. To solve this problem, a bone graft material in the form of a viscous paste was prepared. Hydroxyapatite was used as a bone graft material, and methyl cellulose was used to impart viscosity. Three cases of samples were prepared, and freeze-dried block type and sintered specimens were made from the paste. The recrystallization of the graft material in a simulated body fluid and the degree of graft adhesion with a tooth were observed by scanning electron microscopy (SEM). The test for cytotoxicity was carried out and the sample was grafted into the back of a mouse to confirm the presence or absence of side effects in the animal's body. Based on these investigations, composites of this type are expected to be applicable for bone grafts.

천연 및 합성고무의 기계적 물성 평가 (Mechanical Properties Evaluation of Natural and Synthetic Rubber)

  • 박현성;우창수
    • Elastomers and Composites
    • /
    • 제42권1호
    • /
    • pp.32-46
    • /
    • 2007
  • 고무부품의 신뢰성을 확보하기 위해서 고무재료의 기계적 물성을 정확히 파악하는 것이 매우 중요하다. 본 연구에서는 천연 및 합성고무에 대해 다양한 환경조건에서 물성시험을 수행하여 경도, 신율 및 응력-변형률 관계와 동 특성을 파악하였다. 또한, 고무부품의 유한요소 해석에 필요한 비선형 재료상수를 단축인장과 이축인장시험을 통해 결정하였다.

Y2O3-카본 복합체의 전기전도성에 미치는 소결온도의 영향 (Effects of Sintering Temperature on the Electrical Conductivities of the Y2O3-Carbon Composites)

  • 최관영;오윤석;김성원;김형순;박종훈;이성민
    • 한국세라믹학회지
    • /
    • 제49권2호
    • /
    • pp.173-178
    • /
    • 2012
  • The $Y_2O_3$ ceramics have been widely used as plasma resistant materials in the semiconductor industry. In this study, composites made of plasma resistant $Y_2O_3$ and electrically conductive carbon have been produced. The electrical properties of this composite were measured with respect to the size, volume fraction of the conductive carbon phase, and sintering temperature. When micro-sized carbon was used, the composites were insulating up to 5 wt% addition of the carbon. However, when nano-sized carbon of around 60 ~100 nm was used, the composites became conductive over threshold volume fraction of carbon, which increased with increasing sintering temperature. This behavior of electrical conductivity of the composites was discussed in terms of the percolation theory. The percolation threshold of the conductivity seemed to be affected by the grain growth and coalescences of dispersed conductive carbon phases with grain growth of matrix $Y_2O_3$.

MoS2 Layers Decorated RGO Composite Prepared by a One-Step High-Temperature Solvothermal Method as Anode for Lithium-Ion Batteries

  • Liu, Xuehua;Wang, Bingning;Liu, Jine;Kong, Zhen;Xu, Binghui;Wang, Yiqian;Li, Hongliang
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850135.1-1850135.8
    • /
    • 2018
  • A one-step high-temperature solvothermal approach to the synthesis of monolayer or bilayer $MoS_2$ anchored onto reduced graphene oxide (RGO) sheet (denoted as $MoS_2/RGO$) is described. It was found that single-layered or double-layered $MoS_2$ were synthesized directly without an extra exfoliation step and well dispersed on the surface of crumpled RGO sheets with random orientation. The prepared $MoS_2/RGO$ composites delivered a high reversible capacity of $900mAhg^{-1}$ after 200 cycles at a current density of $200mAg^{-1}$ as well as good rate capability as anode active material for lithium ion batteries. This one-step high-temperature hydrothermal strategy provides a simple, cost-effective and eco-friendly way to the fabrication of exfoliated $MoS_2$ layers deposited onto RGO sheets.

Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.69-84
    • /
    • 2020
  • Based on differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), forced vibrations of a porous functionally graded (FG) scale-dependent beam in thermal environments have been investigated in this study. The nanobeam is assumed to be in contact with a moving point load. NSGT contains nonlocal stress field impacts together with the microstructure-dependent strains gradient impacts. The nano-size beam is constructed by functionally graded materials (FGMs) containing even and un-even pore dispersions within the material texture. The gradual material characteristics based upon pore effects have been characterized using refined power-law functions. Dynamical deflections of the nano-size beam have been calculated using DQM and Laplace transform technique. The prominence of temperature rise, nonlocal factor, strain gradient factor, travelling load speed, pore factor/distribution and elastic substrate on forced vibrational behaviors of nano-size beams have been explored.