• Title/Summary/Keyword: Nano-Composites

Search Result 657, Processing Time 0.019 seconds

Effect of Sodium Lignosulfonate Treatment on the Dispersion of CaCO3 in CaCo3/Polypropylene Composite (Sodium Lignosulfonate 표면처리가 탄산칼슘/폴리프로필렌 복합체에서 탄산칼슘의 분산에 미치는 영향)

  • Song, Junyoung;Kwark, Young-Je;Jeong, Youngjin
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.382-387
    • /
    • 2015
  • The dispersion of calcium carbonate ($CaCO_3$) in polypropylene (PP) and the effect of $CaCO_3$ size on the crystallinity of PP were studied. Polymer composite usually suffers from the brittleness when reinforced with inorganic fillers. The problem is generally related to the size and dispersion of fillers. First, the dispersion was studied for the nanosize $CaCO_3$ with 15~40 nm average diameter. To enhance the dispersibility in PP, the surface of the $CaCO_3$ was treated with sodium lignosulfonate (SLS). $CaCO_3$/PP composites were prepared via melt compounding. The $CaCO_3$ coated with more than 3 wt% SLS was uniformly distributed within the PP matrix, while the uncoated $CaCO_3$ formed aggregated structures in the PP. Even with 30 wt%, the SLS-$CaCO_3$ was well dispersed in the PP matrix. Also, the transition enthalpy of $CaCO_3$/PP increased and the full-width of half maximum of the crystallization peak decreased regardless of SLS coating and size of $CaCO_3$. However, the crystallinity of PP was more influenced by nano $CaCO_3$. These results imply that the nano $CaCO_3$ coated with SLS may reduce the brittleness of polymer composites.

Microstructures and Mechanical Properties of HAp-Ag and HAp-ZrO2Composites Prepared by SPS (SPS에 의해 제조된 HAP-Ag, HAP-ZrO2 복합체의 미세조직 및 기계적 특성)

  • Shin, Na-Young;Oh, Ik-Hyun;Lee, Hee-Jung;Shin, Seung-Yong;Lee, Hae-Hyung;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.334-339
    • /
    • 2004
  • Microstructures and mechanical properties of SPSed monolithic HAp, HAp-Ag, and HAp-ZrO$_2$sintered bodies were investigated by the XRD, SEM, and TEM techniques. The nano-sized HAp powders were successfully synthesized by precipitation of Ca(NO$_3$)$_2$4$H_2O$ and (NH$_4$)HPO$_4$solution. In the HAp-Ag composite, the shrinkage cavities were observed at the interfaces between HAp and large sized Ag particles due to the mismatch of their thermal expansion coefficients. However, no found the defect at the interfaces between HAp and fine-sized Ag particles. In the HAp-ZrO$_2$composite. nano-sized ZrO$_2$particles were almost dispersed at the grain boundaries of HAp phase. The fracture toughness of HAp-Ag and HAp-ZrO$_2$ composites were increased due to the plastic deformation and phase transformation mechanisms of the dispersed fine Ag and ZrO$_2$phase in the HAp matrix, respectively.

Effects of Nano Silica and Siloxane on Properties of Epoxy Composites for Adhesion of Micro Electronic Device (나노 실리카 및 실록산이 초소형 전자소재 접착제용 에폭시 복합재의 물성에 미치는 효과)

  • Lee, Donghyun;Kim, Daeheum
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.332-336
    • /
    • 2009
  • When NCAs(non-conductive adhesives) are used for adhesion of micro-electronic devices, they often show problems such as delamination and cracking, due to the differences of CTE(coefficients of thermal expansion) between NCAs and substrates. Additions of inorganic particles or flexibilizers have been performed to solve those problems. The effects of silica addition on thermal/mechanical properties of amino modified siloxane(AMS)/silica/epoxy-nanocomposites were examined. The silica was treated by 3-glycidoxypropyltrimethoxysilane(GPTMS) for better compatibility between silica and epoxy matrix. AMS/silica/epoxy-nanocomposites filled with various amounts of AMS(1 and 3 phr) and various amounts of silica(3, 5 and 7 phr) were prepared. And Tg, moduli and CTE of nanocomposites were analyzed. Tg of AMS/Aerosil(non-modified silica)/epoxy-nanocomposites decreased from 125 to $118^{\circ}C$ with increasing Aerosil contents and moduli increased from 2,225 to 2,523 MPa with increasing Aerosil contents. Tg of AMS/M-silica (modified silica)/epoxy-nanocomposites decreased from 124 to $120^{\circ}C$ with increasing M-silica contents and moduli increased from 1,981 to 2,743 MPa with increasing M-silica contents. CTE of AMS/Aerosil/epoxy-nanocomposites and AMS/M-silica/epoxy-nanocomposites showed decreasing tendency regardless of the surface treatments.

Preparation and Characterization of Cellulose Nano-Whiskers Extracted from Microcrystalline Cellulose by Acid Hydrolysis (산 가수분해를 이용하여 microcrystalline cellulose로부터 추출 된 cellulose nano-whisker의 특성분석)

  • Jeong, Hae-Deuk;Yoon, Chang-Rok;Lee, Jong-Hyeok;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • Cellulose nanowhiskers (CNW) gamered increasing interest for their remarkable reinforcement of polymer composites. In this work, we were to produce cellulose whiskers from commercially available microcrystalline cellulose (MCC) by acid hydrolysis with sulfuric and hydrochloric acids. Electron microscopy found that each acid produced sililar cellulose crystals of diameters ranging from 20 to 30 nm and lengths ranging from 200 to 300 nm. Moreover, all samples showed remarkable flow birefringence through crossed polarization filters. Conductometric titration of CNW suspensions revealed that the sulfuric acid treated sample had a surface charge of between 140.00 mmol/kg and 197.78 mmol/kg due to sulfate groups, while that of the hydrochloric acid treated sample was undetectable. Thermogravimetric analysis showed that the thermal decomposition temperature and apparent activation energy (evaluated by Broido's method at different stages of thermal decomposition.) of H1-CNW - prepared by hydrolysis with hydrochloric acid - was higher than those of S1-CNW and S2-CNW - prepared by hydrolyzing MCC with sulfuric acid.

Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material (피치로 코팅된 Nano Silicon Sheets/Graphite 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.487-492
    • /
    • 2021
  • In this study, the electrochemical properties of pitch coated silicon sheets/graphite anode materials were investigated. Using NaCl as a template, silicon sheets were prepared through the stöber method and the magnesiothermic reduction methode. In order to synthesize the anode composite, the silicon sheets and graphite were combined with SDBS. The pitch coated silicon sheets/graphite was synthesized using THF as a solvent for the anode material composite. The physical properties of the prepared anode composites were analysed by XRD, SEM, EDS and TGA. The electrochemical performances of the prepared anode composites were performed by the current charge/discharge, rate performance, cyclic voltammetry and EIS tests in the electrolyte LiPF6 dissolved solvents (EC:DMC:EMC=1:1:1 vol%). As the silicon composition of silicon sheets/graphite composite material increased, the discharge capacity also increased, but the cycle stability tended to decrease. The anode material of pitch coated silicon sheets/graphite composite (silicon sheets:graphite=3:7 weight ratio) showed the initial discharge capacity of 1228.8 mAh/g and the capacity retention ratio of 77% after 50 cycles. From these results, it was found that the cycle stability of pitch coated silicon sheets/graphite was improved.

Effects of Shear Mixing on the Dispersion Improvement of Carbon Nanotube Fillers in Epoxy Composites (에폭시 복합재료의 강화에 사용된 탄소나노튜브의 분산 개선에 미친 전단혼합의 영향)

  • Ku, Min Ye;Lee, Gyo Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4385-4391
    • /
    • 2012
  • In this article, the effects of shear mixing on the dispersion improvement of the carbon nanotube fillers in epoxy composites were studied. Through the scanning electron microscope images showing the quantitative results and the tensile tests giving the qualitative data, we can see the dispersion improvement of the fillers. The composite specimen containing 0.6 wt% fillers shows the biggest value of tensile strength. For the tensile stiffness, the specimens containing more filler have the larger values of tensile stiffness.

The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite (금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구)

  • 백영민;이상관;엄문광;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF

Study on Design and Performance of Microwave Absorbers of Carbon Nanotube Composite Laminates (탄소나노튜브 복합재 적층판을 활용한 전파흡수체의 설계 및 성능에 대한 연구)

  • Kim, Jin-Bong;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.38-45
    • /
    • 2011
  • In this paper, we present an optimization method for the single Dallenbach-layer type microwave absorbers composed of E-glass fabric/epoxy composite laminates. The composite prepreg containing carbon nanotubes (CNT) was used to control the electrical property of the composites laminates. The design technology using the genetic algorithm was used to get the optimal thicknesses of the laminates and the filler contents at various center frequencies, for which the numerical model of the complex permittivity of the composite laminate was incorporated. In the optimal design results, the content of CNT increased in proportion to the center frequency, but, on the contrary, the thickness of the microwave absorbers decreased. The permittivity and reflection loss are measured using vector network analyzer and 7 mm coaxial airline. The influence of the mismatches in between measurement and prediction of the thickness and the complex permittivity caused the shift of the center frequency, blunting of the peak at the center frequency and the reduction of the absorbing bandwidth.

Morphology, Transparency, and Thermal Resistance of SAN Nanocomposites Containing Organically Modified Layered Double Hydroxides (유기변성 LDH를 사용한 SAN 나노컴포지트의 형태학, 투명성 및 내열성)

  • Kim, Seog-Jun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.287-294
    • /
    • 2012
  • ZnAl-LDH(layered double hydroxide) (Zn:Al=2:1 mole ratio) modified with stearic acid (SA) or oleic acid (OA) was synthesized by a coprecipitation method and compounded to SAN polymer at various contents. All the SAN composites were manufactured by a co-rotating twin-screw extruder and subsequently injection molded into several specimen. Morphology, transparency, and thermal resistance of these composites were evaluated by TEM, XRD(X-ray diffractometry), UV-Vis spectrophotometry, and thermogravimetric analysis. SAN nanocomposites containing OA-$Zn_2Al$ LDH showed better optical transmittance than SAN nanocomposites containing SA-$Zn_2Al$ LDH. All the SAN nanocomposites containing OA-$Zn_2Al$ LDH or SA-$Zn_2Al$ LDH exhibited improvement of thermal resistance at second stage of thermal oxidation. These results were explained by the fact that the interaction between organic modifier and polymer performed an important role in the property improvement of polymer nanocomposites.

Design and Fabrication of Split Hopkinson Pressure Bar for Dynamic Mechanical Properties of Self-reinforced Polypropylene Composite (폴리프로필렌 자기 보강 복합재의 동적 물성 구축을 위한 Split Hopkinson Pressure Bar의 설계 및 제작)

  • Kang, So-Young;Kim, Do-Hyoung;Kim, Dong-Hyun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.221-226
    • /
    • 2018
  • The Split Hopkinson Pressure Bar(SHPB) has been the most widely used apparatus to characterize dynamic mechanical behavior of materials at high strain rates between $100s^{-1}$ and $10,000s^{-1}$. The SHPB test is based on the wave propagation theory which was developed to give the stress, strain and strain rate in the specimen using the strains measured in the incident and transmission bars. In this study, the SHPB was directly designed and fabricated for the dynamic mechanical properties of fiber reinforced plastic (FRP) composites. In addition, this apparatus was verified for the validity by comparing the strain data obtained through the high speed camera and Digital Image Correlation(DIC) during the high strain rate compression test of the self-reinforced polypropylene composite (SRPP) specimen.