Preparation and Characterization of Cellulose Nano-Whiskers Extracted from Microcrystalline Cellulose by Acid Hydrolysis

산 가수분해를 이용하여 microcrystalline cellulose로부터 추출 된 cellulose nano-whisker의 특성분석

  • Jeong, Hae-Deuk (Polymer Processing Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Yoon, Chang-Rok (Polymer Processing Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jong-Hyeok (Polymer Processing Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Bang, Dae-Suk (Polymer Processing Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 정해득 (국립금오공과대학교 고분자공학과) ;
  • 윤창록 (국립금오공과대학교 고분자공학과) ;
  • 이종혁 (국립금오공과대학교 고분자공학과) ;
  • 방대석 (국립금오공과대학교 고분자공학과)
  • Received : 2010.02.17
  • Accepted : 2010.03.19
  • Published : 2010.03.30

Abstract

Cellulose nanowhiskers (CNW) gamered increasing interest for their remarkable reinforcement of polymer composites. In this work, we were to produce cellulose whiskers from commercially available microcrystalline cellulose (MCC) by acid hydrolysis with sulfuric and hydrochloric acids. Electron microscopy found that each acid produced sililar cellulose crystals of diameters ranging from 20 to 30 nm and lengths ranging from 200 to 300 nm. Moreover, all samples showed remarkable flow birefringence through crossed polarization filters. Conductometric titration of CNW suspensions revealed that the sulfuric acid treated sample had a surface charge of between 140.00 mmol/kg and 197.78 mmol/kg due to sulfate groups, while that of the hydrochloric acid treated sample was undetectable. Thermogravimetric analysis showed that the thermal decomposition temperature and apparent activation energy (evaluated by Broido's method at different stages of thermal decomposition.) of H1-CNW - prepared by hydrolysis with hydrochloric acid - was higher than those of S1-CNW and S2-CNW - prepared by hydrolyzing MCC with sulfuric acid.

본 연구에서는 친환경적인 특징을 가지면서도 우수한 기계적 특성을 가지고 있어 고분자 복합재료의 보강제로 주목 받고 있는 Cellulose nanowhisker (CNW) 를 염산 혹은 황산을 사용한 산가수분해 방법을 이용하여 Microcrystalline cellulose (MCC) 로 부터 추출하였다. 염산 혹은 황산을 사용하여 추출된 CNW는 직경이 20 에서 30nm 정도였고, 길이가 200 에서 300 nm 로써, 형상학적 측면에서 유사한 특성을 가지는 것을 확인하였다. 또한 전해질 용액의 전기전도도를 이용한 적정 (conductometric titration) 결과 황산을 이용하여 제조되어진 CNW의 경우, 셀룰로오스 표면의 sulfate group 에 의해 나타나는 표면전하 값이 각각 140, 197.78 mmol/kg으로 나타났으며, 염산을 이용하여 제조되어진 CNW 의 경우 셀룰로오스 표면에 약한 전하 값을 가져 표면전하 값을 구할 수 없었다. 황산을 이용하여 추출된 CNW의 열중량 분석 결과 염산을 이용하여 추출된 CNW와 비교하여 열분해 온도가 급격히 감소하는 것을 확인할 수 있었으며, Broido's method를 이용하여 정의 되어진 열분해 거동에 대한 활성화 에너지 역시 상대적으로 낮음을 확인할 수 있었다.

Keywords

References

  1. D. Fengel and G. Wegener, "Wood: Chemistry, Ultrastructure, Reactions", Walter de Gruyter: New York, (1984).
  2. J. Araki, M. Wada, S. Kuga, and T. Okano, "Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose", Colloids Surf., A, 142, 75 (1998). https://doi.org/10.1016/S0927-7757(98)00404-X
  3. C. Tokoh, K. Takabe, M. Fujita, and H. Saiki, "Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan", Cellulose, 5, 249 (1998). https://doi.org/10.1023/A:1009211927183
  4. M. W. W. Grunert, "Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals", J. Polym. Environ., 10, 27 (2002). https://doi.org/10.1023/A:1021065905986
  5. K. Tashiro and M. Kobayashi, "Theoretical avaluation of three dimensional elastic constants of native and regenerated celluloses; role of hydrogen bonds", Polymer, 32, 1516 (1991). https://doi.org/10.1016/0032-3861(91)90435-L
  6. A. Sturcova, G. R. Davies, and S. J. Eichhorn, "Elastic modulus and stress-transfer properties of tunicate cellulose whiskers", Biomacromolecules, 6, 1055 (2005). https://doi.org/10.1021/bm049291k
  7. S. Hill, "Cars that grow on trees", New Scientist. February, 36 (1997).
  8. R. Kozlowski and B. Mieleniak, "New trends in the utilization of byproducts of fibre crops residue in pulp and paper industry, building, engineering, automotive industry and interior furnishing", Proceedings of the 3rd International Symposium on Natural Polymers and Composites (ISNaPol 2000), 504 (2000).
  9. A. L. Leao, R. Rowell, and N. Tavares, "Application of natural fibers in automotive industry in Brazil", Science and technology of polymers and advanced materials. Plenum Press: New York, 755 (1998).
  10. B. Dahlke, H. Larbig, H. D. Scherzer, and R. Poltrock, "Natural fiber reinforced foams based on renewable resources for automotive interior applications", J. Cellular Plast., 34, 361 (1998). https://doi.org/10.1177/0021955X9803400406
  11. A. S. Herrmann, J. Nickel, and U. Riedel, "Construction materials based upon biologically renewable resources -from components to finished parts", Polym. Degrad. Stab., 59, 251 (1998). https://doi.org/10.1016/S0141-3910(97)00169-9
  12. W. A. Knudson and H. C. Peterson, The market potential of biobased fibers and nanofibers in the auto industry. Product center for Agriculture and Natural Resources, Michigan State University, (2005).
  13. B. G. Ranby, "The cellulose micelles", Tappi., 35, 53 (1952).
  14. R. H. Marchessault, F. F. Morehead, and M. J. Koch, "Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape", J. Colloid Sci., 16, 327 (1961). https://doi.org/10.1016/0095-8522(61)90033-2
  15. V. Favier, H. Chanzy, and J. Y. Cavaille, "Polymer nanocomposites reinforced by cellulose whiskers", Macromolecules, 28, 6365 (1995). https://doi.org/10.1021/ma00122a053
  16. W. G. Glasser, R. Taib, R. K. Jain, and R. Kander, "Fiber-reinforced cellulosic thermoplastic composites", J. Appl. Polym. Sci., 73, 1329 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990815)73:7<1329::AID-APP26>3.0.CO;2-Q
  17. J. F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, and D. G. Gray, "Helicoidal self-ordering of cellulose microfibrils in aqueous suspension", Int. J. Biol. Macromol., 14, 170 (1992). https://doi.org/10.1016/S0141-8130(05)80008-X
  18. S. Katz, R. P. Beatson, and A. M. Scallan, "The determination of strong and weak acidic groups in sulfite pulps", Sven. Papperstidn., 6, 48 (1984).
  19. R. H. Marchessault, F. F. Morehead, and N. M. Walter, "Liquid crystal systems from fibrillar polysaccharides", Nature, 184, 632 (1959). https://doi.org/10.1038/184632a0
  20. A. Dufresne and M. R. Vignon, "Improvement of starch film performances using cellulose microfibrils", Macromolecules, 31, 2693 (1998). https://doi.org/10.1021/ma971532b
  21. V. Favier, H. Chanzy, and J. Y. Cavaille, "Polymer nanocomposites reinforced by cellulose whiskers", Macromolecules, 28, 6365 (1995). https://doi.org/10.1021/ma00122a053
  22. G. Chauve, L. Heux, R. Arouini, and K. Mazeau, "Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy", Biomacromolecules, 6, 2025 (2005). https://doi.org/10.1021/bm0501205
  23. M. A. S. A. Samir, F. Alloin, J. Y. Sanchez, N. E. I. Kissi, and A. Dufresne, "Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension", Macromolecules, 37, 1386 (2004).
  24. M. A. S. A. Samir, F. Alloin, W. Gorecki, J. Y. Sanchez, and A. Dufresne, "Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals", J. Phys. Chem., B, 108, 10845 (2004). https://doi.org/10.1021/jp0494483
  25. J. Araki, M. Wada, S. Kuga, and T. Okano, "Birefringent glassy phase of a cellulose microcrystal suspension", Langmuir, 16, 2413 (2000). https://doi.org/10.1021/la9911180
  26. W. J. Orts, L. Godbout, R. H. Marchessault, and J. F. Revol, "Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study", Macromolecules, 31, 5717 (1998). https://doi.org/10.1021/ma9711452
  27. G. Varhegy, Jr M. J. Antal, T. Sezkely, F. Till, and E. Jakab, "Simultaneous thermogravimetric - mass spectrometric studies on the thermal decomposition of biopolymers", Energy Fuels, 2, 267 (1988). https://doi.org/10.1021/ef00009a007
  28. S. Julien, E. Chornet, and R. P. Overend, "Influence of acid pre-treatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose", J. Anal. Appl. Pyrolysis, 27, 25 (1993). https://doi.org/10.1016/0165-2370(93)80020-Z
  29. D. Y. Kim, Y. Nishiyama, M. Wada, and S. Kuga, "Highyield carbonization of cellulose by sulfuric acid impregnation", Cellulose, 8, 29 (2001). https://doi.org/10.1023/A:1016621103245
  30. J. Scheirs, G. Camino, and W. Tumiatti, "Overview of water evolution during the thermal degradation of cellulose", Eur. Polym. J., 37, 933 (2001). https://doi.org/10.1016/S0014-3057(00)00211-1
  31. A. Broido, "A simple sensitive graphical method of treating thermogravimetric analysis data", J. Polym. Sci. Part A-2, 7, 1761 (1969). https://doi.org/10.1002/pol.1969.160071012
  32. H. H. Horowitz and G. Metzger, "A new analysis of thermogravimetric traces", Anal. Chem., 35, 1465 (1963).
  33. J. E. J. Staggs, "Discrete bond-weighted random scission of linear polymers", Polymer, 47, 897 (2006). https://doi.org/10.1016/j.polymer.2005.11.085